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SUMMARY

This dissertation consists of two parts, falling under the closely related fields

of counting and sampling.

In the first part, we explore the relationships between several natural notions

of adjacency on Catalan structures and their associated random walks. We use a

matroid interpretation of Dyck words of length 2n to give a new order n2 bound on

the mixing time for the transposition walk. We also give a general mixing bound

for random walks on the Boolean cube when censored to remain within some large

monotone subset.

In the second part, we extend several related extremal results about the number

of matchings and independent sets in regular graphs. First we propose a method for

tackling the Upper Matching Conjecture of Friedland, et al. for matchings of small

fixed size. Next we prove a conjecture of Galvin regarding the extremal graph for

number of Widom-Rowlinson configurations, a particular instance of graph homomor-

phisms. Finally, we make progress towards unifying the extremal bounds of Kahn,

Galvin & Tetali, and Zhao for independent sets and of Davies, et al., for matchings by

giving two general bounds for matchings in regular, uniform hypergraphs, improving

on a similar bound due to Ordentlich & Roth.

x



CHAPTER I

INTRODUCTION

1.1 Overview

This dissertation consists of two parts, falling under the closely related fields of count-

ing and sampling.

In the first part, we start in Chapter 2 by exploring the relationships between

several natural notions of adjacency on Catalan structures and their associated ran-

dom walks. In Chapter 3 we derive a new order n2 bound on the mixing time for the

transposition walk by combining a matroid interpretation of Dyck paths of length 2n

due to Ardila (2003) with a general bound on the mixing time for balanced matroid

basis exchange walks given by Feder & Mihail (1992). Finally, in Chapter 4 we give

a general mixing bound for random walks on the Boolean cube when censored to re-

main within some large monotone subset, improving on a similar bound due to Ding

& Mossel (2014).

In the second part, we extend several related extremal results about the number of

matchings and independent sets in regular graphs. In Chapter 5 we propose a method

for tackling the Upper Matching Conjecture of Friedland, et al. (2008)—that a union

of complete bipartite graphs has the most matchings of size t among d-regular graphs

on n vertices—as it applies to matchings of small fixed size. Next, in Chapter 6

we discuss an analogous question for graph homomorphisms to a fixed target graph

H, a broad class of problems which includes independent sets and colorings. We

prove a conjecture of Galvin regarding the extremal graph for the special case of

counting Widom-Rowlinson configurations in regular graphs. Finally, in Chapter 7 we

make progress towards unifying the extremal bounds of Kahn (2001), Galvin & Tetali
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(2004), and Zhao (2009) for independent sets and of Davies et al. for matchings by

giving two general bounds for matchings in regular, uniform hypergraphs, improving

on a similar bound due to Ordentlich & Roth (2004).

1.2 Notation

A graph G = (V,E) is a set of vertices V along with a collection of edges E consisting

of unordered pairs of vertices. Either E or its elements may in fact be multisets; an

edge of the form {v, v} is called a loop at v ∈ V . We may refer to the vertex set

and edge set of G by V (G) and E(G), respectively, and write n(G) := |V (G)| and

e(G) := |E(G)|, respectively. If the graph G is clear from context we may omit it

from the notation.

The degree of a vertex v ∈ V (G) is d(v) = dG(v) := |{e ∈ E(G) | v ∈ e}|. Note

that a loop at v only counts once towards its degree. A graph is d-regular if d(v) = d

for all v ∈ V (G).

For a graph G and A ⊆ V (G), the subgrpah of G induced on A has vertex set A

and edges {e ∈ E(G) | e ⊆ A}, and is denoted G[A].

For integers a ≤ b will write [a, b] for the closed discrete interval {a, a + 1, . . . , b}

and [a] := [1, a]. (This notation overlaps with the common notation for real intervals,

but it should be clear from context which meaning is intended.) For sets A,B we also

adopt the standard notations AB := {f : B → A} and
(
A
a

)
:= {S ⊆ A | |S| = a}.
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CHAPTER II

CATALAN MIXING

2.1 Introduction

There are many natural classes of combinatorial structures which are enumerated by

the Catalan sequence: 1, 2, 5, 14, 42, . . . (OEIS A000108), the nth term of which is the

Catalan number Cn = 1
n+1

(
2n
n

)
. Some examples include the set of all triangulations

of a regular polygon of n+ 2 sides, the set of non-crossing partitions of an n-set (the

lattice on which is of much interest to researchers in free probability), and the set

of strings consisting of n balanced pairs of parentheses—or equivalently, described

as Catalan strings x ∈ {±1}2n of n 1’s and n −1’s with non-negative partial sums,∑j
i=1 xi ≥ 0, for all j. This last structure (of Catalan strings) is also known as the

set of Dyck paths, and is visualized as lattice paths of n up-steps and n down-steps,

representing the 1’s and the −1’s respectively. (See Figure 1.)

For any given n ≥ 1, generating a Catalan structure (such as triangulation or

a Dyck path) uniformly at random from the set of Cn many, is a straightforward

task, and can be done in time linear in n, not too unlike generating uniformly at

( ( ( ) ) ( ) ) ( ( ) )

(a) (b)

1 2 3 4 5 6

(c) (d)

Figure 1: Some Catalan structures for n = 6: (a) a Dyck path of length 12 and its
corresponding parenthesization; (b) a triangulation of an octagon; (c) the noncrossing
partition {{1, 3, 4}, {2}, {5, 6}} of {1, ..., 6}, represented as a noncrossing matching on
12 points; (d) a binary plane tree with 6 internal nodes.
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random one of the n! permutations of [n]. Furthermore, natural bijections between

Catalan realizations ensure that the ability to sample from any one Catalan realization

translates easily to sampling from the others. However, the study (of convergence

to equilibrium) of particular Markov chain Monte Carlo algorithms which yield a

random Catalan structure is seemingly much more interesting. The inspiration for

this endeavor in part stems from an open problem of Aldous [4], who conjectured

that the random walk on triangulations of a polygon on n sides, performed using

uniform diagonal flips, ought to take time roughly n3/2 (up to factors logarithmic in

n). Despite much effort by various researchers in this topic over several years, the

best known bounds for the mixing time of the chain on triangulations remain those

of McShine & Tetali [55], who proved an upper bound of O(n4) on the relaxation

time (also known as the inverse spectral gap), and Molloy, Reed & Steiger [56] who

showed Ω(n3/2) as a lower bound.

In general, tight analysis of natural Markov chains on Catalan structures seems to

be a challenging problem. To date, the only known sharp upper bounds for Catalan

walks are those of Wilson [71] for adjacent transpositions on Catalan strings (which

follows from a more general analysis of adjacent transpositions in lattice paths) and

the usual bounds on mixing times for the (almost trivial) Catalan realization consist-

ing of cyclic strings of n zeros and n+ 1 ones (as discussed in [17]).

The remainder of this chapter gives an overview of some of the most natural and

interesting Markov chains on Catalan structures, and discusses their similarities and

differences. In Chapter 3 we use a different method to give a new bound for the mixing

time of the Markov chain on Catalan strings whose moves consist of transposing

any two elements (subject to maintaining the non-negativity of partial sums). Our

analysis generalizes to a larger class of random walks on constrained lattice paths.

Finally, in Chapter 4 we discuss a more general approach to bounding mixing times

for Markov chains on the Boolean cube subject to a monotone constraint.
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2.1.1 Markov chain preliminaries

A Markov chain is a sequence of random variables (Xi)i≥0 from a (finite) state space

Ω such that the conditional distribution of Xt+1 given Xt is independent of the history

(Xi)0≤i<t (i.e., the sequence is memoryless). The Markov chain is homogeneous if this

conditional distribution is independent of the time t, in which case we can describe

it by its transition matrix P , the stochastic matrix with entries P (x, y) = Pr(Xi =

y | Xi−1 = x). If the state at a given time has probability distribution vector f , then

the distribution of the next step is Pf and after t steps the distribution is P tf .

In this dissertation we will only be concerned with homogeneous Markov chains

with symmetric transition matrices. The transition graph of a symmetric Markov

chain is the graph with vertex set Ω and x, y ∈ Ω adjacent if P (x, y) > 0, representing

the possible transitions. One can think of a symmetric Markov chain as a random

walk on its transition graph. A symmetric Markov chain is ergodic if its transition

graph is connected and non-bipartite (taking loops into account), and it is well-known

that in this case the limiting distribution of P t(x, ·) as t → ∞ is uniform (for every

initial state x). This stationary distribution π satisfies Pπ = π.

Definition 2.1. The mixing time tmix = tmix(ε) of a Markov chain is the smallest

time t such that

1

2

∑
y∈Ω

|P t′(x, y)− π(y)| < ε

for all initial states x and at every time t′ ≥ t.

In other words, the mixing time is the number of steps necessary to ensure that

the state is close to uniform random (regardless of the initial state).

Most of the literature studying Markov chains is devoted to bounding mixing

times, and a wide variety of methods has been developed to this end (see [49]). One

of the most common methods is a coupling argument [3, 16], which shows that after

a certain amount of time two dependent but individually faithful copies of a Markov

5



chain are almost surely in the same state; hence if one copy begins at stationarity then

at that time the other must be stationary as well, regardless of its initial state. As

coupling arguments do not seem to work well for the applications we are interested in,

we will instead mostly consider several other Markov chain parameters—conductance,

spectral gap, and log-Sobolev constant—which are closely related to the mixing time

and are often easier to bound.

Definition 2.2. The spectral gap γ and log-Sobolev constant α of a symmetric

Markov chain are

γ := inf
f

E(f)

Var(f)
and α := inf

f

E(f)

L(f)
,

where

E(f) :=
1

2

∑
x,y∈Ω

(f(x)− f(y))2P (x, y)π(x),

Var(f) :=
1

2

∑
x,y∈Ω

(f(x)− f(y))2π(y)π(x), and

L :=
∑
x∈Ω

f(x)2(log f(x)2 − log E(f 2))π(x),

and the infima are taken over non-constant functions f : Ω→ R.

The term spectral gap originates from the equivalent definition of γ as the differ-

ence between the largest and second-largest eigenvalues of the transition matrix.

The inverse of the spectral gap, 1/γ, is called the relaxation time, and is well-

known to be closely related to the mixing time:

Theorem 2.3. For a symmetric Markov chain,

1

γ
≤ tmix(1/e) ≤

2 + log|Ω|
2γ

.

There is a tighter relationship betwen the log-Sobolev constant and the mixing

time, due to Diaconis [26]

6



Theorem 2.4. For a symmetric Markov chain,

1

2α
≤ tmix(1/e) ≤

4 + log log|Ω|
4α

.

Thus in order to bound the mixing time it suffices to bound γ or α (although such

a bound may not give a tight bound on the mixing time.) In more combinatorial

situations it is sometimes easier to bound the conductance.

Definition 2.5. The conductance (or bottleneck ratio) of a symmetric Markov chain

is

Φ := min
S⊆Ω

π(S)≥1/2

∑
x,y∈S P (x, y)

|S|
.

The conductance is closely related to the spectral gap, and in fact can be for-

mulated (up to a constant factor) in the same way but with the infimum only over

functions f : Ω → {0, 1}. Indeed, the conductance cannot be too far away from the

spectral gap:

Theorem 2.6 ([66, 48]). The conductance Φ and spectral gap γ of a reversible Markov

chain satisfy

Φ2

2
≤ γ ≤ 2Φ.

There are several Markov chain comparison theorems which allow us to bound

these parameters of a random walk given a known bound for a similar walk on the

same state space, such as the following bounds described by Randall & Tetali (among

others [25, 57]). The theorems extend to general reversible Markov chains, but we

state them here in the simpler case of symmetric Markov chains.

Theorem 2.7 ([63]). Let P and P̃ be symmetric transition matrices on the same

state space Ω with transition graphs G = (Ω, E) and G̃ = (Ω, Ẽ), respectively. For

each x, y ∈ Ẽ let Γx,y be an x-y path in G. Define the congestion ratio of the set of

7



canonical paths Γ to be

B := max
(z,w)∈E

∑
(x,y)∈Ẽ

(z,w)∈Γx,y

( P̃ (x, y)

P (z, w)
|Γx,y|

)
.

Then

1

γ
≤ B

1

γ̃
,

1

α
≤ B

1

α̃
, and

tmix ≤ O
(
log|Ω|B t̃mix

)
That is, if it is possible to simulate the transitions in P̃ by paths in P without

relying too heavily on any given transition, then the mixing time of P cannot be that

much larger than the mixing time of P̃ .

One would think that such a theorem might be applicable to this situation, where

we have several walks on the the space of Catalan structures of order n, which we

can identify across realizations by specifying a bijection. However, although there

tend to be simple—often almost trivial—bijections between different realizations of

the Catalan sequence, the most natural Markov chains for different realizations seem

to translate rather unnaturally along these bijections and can indeed be very different

chains.

2.2 Some Catalan walks

Here we introduce in more depth the realizations of the Catalan sequence which we

will use later. Note that this list of Catalan structures is far from comprehensive; see

[69] for a more complete (but still not exhaustive) list of over 200 different realizations

of the Catalan numbers. For each realization here we give one or two natural notions

of adjacency and discuss the corresponding Markov chains. These Markov chains are

all symmetric and ergodic; in fact, each of them can be described as a random walk

on its transition graph G, which moves from state x along any edge incident to x,

each with transition probability P (x, y) = p < 1/2∆(G) for every y ∼ x, where ∆(G)

is the maximum degree in G (the walk stays at x with the remaining probability).
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2.2.1 Catalan strings and Dyck paths

We have already mentioned Catalan strings, but we state the definition again for

reference and completeness:

Definition 2.8. A Catalan string of order n is a sequence x ∈ {±1}2n of n 1’s and

n −1’s with non-negative partial sums hx(i) :=
∑j

i=1 xi ≥ 0 for all 0 ≤ j ≤ 2n.

If the sequence is thought of as a string then the symbols used become rather

immaterial, and in many cases it is convenient to use {+,−}, {1, 0}, {(, )}, or {U,D}

(for up and down) in place of {1,−1}. This last comes from the common visualization

of a Catalan string as a Dyck path by plotting the height function hx on the 2-

dimensional integer lattice. That is, the path starts at (0, 0) and takes 2n steps

northeast (up) or southeast (down), returning to (2n, 0) and never passing below the

x-axis. (See Figure 1(a).)

Since the numbers of up- and down-steps are constant among Catalan strings of

length 2n, a natural way to design a random walk on the space of Cn such strings

is by permuting the string via natural actions of generators of the symmetric group

S2n. (For x a string of length k and σ ∈ Sk, we will denote the usual group action

by σ(x)i = xσ(i).) Unfortunately, generating S2n also means that such moves will

generate invalid strings (which violate the non-negative partial sum constraint), so

we must disallow moves which produce invalid strings. This approach yields some

natural random Markov chains on the space of Catalan strings.

Definition 2.9. From an initial Catalan string x, a step of the (lazy) random trans-

position walk on Catalan strings is as follows:

• Pick two uniform random indices i, j ∈ [2n]. Let τi,j = (i j) ∈ S2n be the

permutation which transposes indices i and j.

• If x′ = τi,j(x) is a valid Catalan string, the next state is x′. Otherwise, if x′ is

invalid, the next state is x.

9



i j

(a) Valid

i j

(b) Invalid

Figure 2: A valid move and an invalid (censored) move of the random transposition
walk on Catalan strings.

i
(a) Valid

i
(b) Invalid

Figure 3: A valid move and an invalid (censored) move of the adjacent transposition
walk on Catalan strings.

We can describe a similar walk using only transpositions at adjacent indices.

Definition 2.10. From an initial Catalan string x, a step of the (lazy) adjacent

transposition walk on Catalan strings is as follows:

• Pick a uniform random index i ∈ [2n− 1].

• If x′ = τi,i+1(x) is a valid Catalan string, the next state is either x or x′ with

equal probability. Otherwise, if x′ is invalid, the next state is x.

In either case, if the proposed string x′ is not a valid Catalan string, the move is

said to have been invalid, or censored. Note that in both cases it is possible to have

x = x′, but for random transpositions this happens with probability 1/2 (whenever

the chosen indices are either both up-steps or both down-steps), so both walks are

lazy. (Laziness is useful to ensure ergodicity of the random walk.)

Of course, similar walks can be made from any symmetric set of generators of S2n.

However, one should note that the censoring mechanic for staying within the space

of valid Catalan strings favors moves which are more “local,” in the sense that the

10



more the string is changed by a single move the more likely the resulting string is to

be invalid and the move censored. For this reason, allowing more generators does not

necessarily decrease the mixing time, since adding moves which are often censored

will decrease the probability of moving at all. For example, one Markov chain which is

well-studied on permutations is the riffle shuffle, which simulates the standard method

of shuffling cards by splitting the deck into two halves (with binomially distributed

sizes) and randomly interleaving them, maintaining the order within each half. This

mixes very rapidly (O(log n)) for permutations [3], but the censoring step makes direct

application to Catalan strings unlikely to mix well. In particular, in a Catalan string

one is more likely to find up-steps near the beginning of the string and down-steps

near the end, but with its aggressive mixing strategy the riffle shuffle actively tries

to fix this. As a result, almost every move will be censored and the Markov chain

will go very slowly. It is interesting, however, to ask whether the riffle shuffle can be

modified to work well for Catalan strings, yielding a natural, nontrivial Markov chain

with polylogarithmic mixing time.

The transition graph for the adjacent transposition walk is actually the Hasse

diagram of the Stanley lattice, the partially ordered set (poset) on Dyck paths with

comparison x ≤ y if the path x is never above the path y. Indeed, we will see that

many of the Catalan walks we will study are in fact walks on the Hasse diagrams of

related poset lattices.

Without the censoring step we would have a random (or adjacent) transposition

walk on the set of
(

2n
n

)
binary strings with an equal number of 1s and −1s. It is well-

known (see e.g., [27])—sometimes under the name Bernoulli-Laplace model—that

O(n log n) such random transpositions are necessary and sufficient to reach (close to)

equilibrium. It is also well-known that the so-called random transposition shuffle of

n distinct cards mixes in Θ(n log n) time. However, the constraint of having non-

negative height seems to thwart any type of straightforward (or otherwise) analyses,
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despite the best efforts of several experts in the field.

The uncensored adjacent transposition walk on binary strings (and on permuta-

tions) has also been studied. An analysis due to Wilson [71] gives Θ(n3) relaxation

time and Θ(n3 log n) mixing time for uncensored adjacent transpositions, thought of

as lattice paths in Θ(n)×Θ(n) box, and similarly for adjacent transpositions on Sn.

In fact, Wilson’s lattice path upper bound also generalizes to the case of lattice paths

constrained to any interval in the Stanley lattice, i.e., the adjacent transposition walk

on paths in the n × n box, censored to remain between two (comparable) boundary

paths. His lower bound relies on the lack of censoring and does not immediately apply

to the case of Dyck paths.

We can apply Theorem 2.7 to give a simple polynomial mixing bound for random

transpositions, based on Wilson’s bound for adjacent transpositions.

Proposition 2.11. The relaxation time of the random transposition walk on Catalan

strings is at most O(n4).

Proof. To bound the relaxation time of the random transposition walk by comparison

to adjacent transpositions, we must simulate each allowable adjacent transposition

x→ y using a path Γx,y consisting of random transpositions. However, each adjacent

transposition is itself a random transposition, and so we can use paths of length 1.

The congestion ratio is then just the ratio of the transition probabilities, which in this

case is O(n), and so the result folows from Theorem 2.7 and Wilson’s Θ(n3) bound

on the relaxation time for adjacent transpositions.

Since the Catalan numbers satisfy logCn = Θ(n), this gives a mixing time upper

bound of O(n5). Unfortunately, Wilson’s analysis does not bound the log-Sobolev

constant (which, if it were also O(n3 log n), would yield a better bound in this com-

parison).
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This bound, while polynomial, is rather large. In the case of adjacent transposi-

tions the censoring has little effect on the mixing time, and we might expect that the

same should be true for random transpositions.

Conjecture 2.12. The mixing time of the Catalan random transposition walk is

Θ(n log n).

There is a nearly trivial O(n) lower bound on the mixing time due to the diameter

of the transition graph. While a tight analysis of the mixing time for Catalan random

transpositions has remained elusive, we will use more sophisticated methods to give

an O(n2 log n) upper bound in Chapter 3.

2.2.2 Cyclic strings

Perhaps simultaneously the simplest and the strangest of Catalan realizations is that

of cyclic strings.

Definition 2.13. A cyclic string of order n is an equivalence class x of strings x ∈

{±1}2n+1 consisting of n+ 1 ones and n minus ones, modulo the equivalence relation

of cyclic rotation (i.e., strings x and y are considered equivalent if x = ρk(y) for some

k, where ρ = (1 2 . . . 2n+1) ∈ S2n+1 is the long cycle).

It is not hard to see that the 2n + 1 cyclic rotations of such a string are all

distinct, making it clear that the number of cyclic strings of order n is indeed Cn =

1
2n+1

(
2n+1
n

)
= 1

n+1

(
2n
n

)
. In fact, one of the best-known proofs of the formula (due to

Narayana [59]) for enumerating Dyck paths is via a bijection between cyclic strings

and Catalan strings: each cyclic string equivalence class has a unique representative

of the form 1x, where x is a valid Catalan string.

Cyclic strings are a very simple Catalan realization, in that they are easy to

construct and easy to count. However, they are somewhat anomalous as a Catalan

realization in that they do not exhibit in any obvious way the same recursive structure

that is common to almost every other Catalan realization (see Section 2.2.6).
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The class of cyclic strings is very similar to that of Catalan strings (as evidenced

by the simple bijection), but is somewhat more forgiving in terms of making local

changes, since there are no invalid strings. Indeed, Caputo [17] observed that it is

easy to construct any number of efficient Markov chains on cyclic strings.

Definition 2.14. Let S be a symmetric set of generators of S2n+1 which is closed

under conjugation by ρ = (1 2 . . . 2n+ 1). From an initial cyclic string x with

representative x ∈ x, a step of the (lazy) S-permutation walk on cyclic strings is as

follows:

• Pick a uniform random element σ ∈ X, and let x′ = σ(x) (where σ(x)i = xσ(i)

is the natural group action).

• The next state is either x or x′ with equal probability.

Since X is closed under conjugation by r the transition probability of moving from

x to x′ is independent of the representative x, and so the Markov chain on equivalence

classes is well-defined. Furthermore, since there are no invalid strings we do not have

to worry about censoring moves.

Since S is symmetric and generates S2n+1 the resulting Markov chain is ergodic,

and indeed the mixing time of such a Markov chain is at most the mixing time of

the corresponding Markov chain on S2n+1. In particular, the aforementioned results

for uncensored transpositions on Sn immediately give O(n3 log n) and O(n log n) up-

per bounds for the mixing times of the adjacent and random transposition walks,

respectively, on cyclic strings. (It is not obvious how to show that the projection onto

equivalence classes does not speed up mixing.)

Of course, given a bijection between two Catalan realizations (such as the one

mentioned above between cyclic strings and Catalan strings) one can think of any

Markov chain on one realization as a Markov chain on the other. Indeed, the ad-

jacent (random) transposition chain on cyclic strings includes all of the transitions
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Figure 4: A triangulation and its dual binary plane tree. The double line indicates
the base of the polygon and the unfilled vertex indicates the root of the tree.

which are available in the adjacent (random) transposition chain on Catalan strings.

Unfortunately, the chains on cyclic strings also include many more transitions which

are very unnatural for Catalan strings; these would be censored by the Catalan string

walks but are instead “fixed” by a rotation of sorts which may dramatically rearrange

the string. Despite the marked similarities between these Markov chains, the inclu-

sion of these extra moves makes comparison arguments seem infeasible for obtaining

meaningful bounds on the mixing times of Markov chains on Catalan strings.

2.2.3 Triangulations and binary plane trees

Definition 2.15. A triangulation of order n is a collection of n − 1 pairwise non-

crossing diagonals of a convex (n+ 2)-gon.

We will think of the vertices of the (n+ 2)-gon as being labeled by [0, n+ 1], with

the edge (0, n + 1) as the “base” of the polygon. Any triangulation of order n gives

a partition of the (n+ 2)-gon into exactly n triangles.

Definition 2.16. A rooted binary plane tree is a rooted tree in which each non-leaf

vertex has two children: a left child and a right child. The tree is said to have order

n if it has n internal (i.e., non-leaf) nodes.

There is a natural bijection between triangulations and binary plane trees: the

dual tree of a given triangulation is a binary plane tree (taking the root of the tree

to be the base of the polygon). See Figure 4.
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(a)

↔

(b)

↔

(c)

Figure 5: (a) a diagonal flip and (b) the corresponding node rotation. (c) If we forget
about the rootedness of the tree, a node rotation simply reconnects a small subsection
of the tree.

Definition 2.17. From an initial triangulation T , a step of the (lazy) diagonal flip

walk is as follows:

• Pick a uniform random diagonal and remove it, leaving a quadrilateral.

• Split the quadrilateral by adding back one of its two diagonals, with equal

probability, and let this new triangulation be the next state.

Note that half the time the diagonal that is added back in is the original one, so

the walk is indeed lazy. Unlike the transposition walks on Catalan strings, this walk

does not require any censoring: all n − 1 moves are always available and valid. If

translated to binary plane trees along the bijection above, a transition in the diagonal

flip walk corresponds to a node rotation, a local rearrangement of a binary tree which

is well-attested in the computer science literature (for example in the context of self-

balancing trees). Furthermore, an analog of the diagonal flip walk yields a possible

tool for sampling and studying triangulations of a nonconvex polygon, which are of

much interest in computational geometry [10, 12] (although the nonconvex case is

even more complicated since it does require censoring; it is not even known when the

nonconvex walk mixes in polynomial time). The transition graph for the diagonal

flip walk is the Hasse diagram of the Tamari poset lattice (a sublattice of the Stanley

lattice), or equivalently the 1-skeleton of the associahedron.

A standard bijection between binary plane trees and Catalan strings constructs a
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string from a given tree by visiting each node of the tree in depth-first search order

and recording whether it is a left child (U) or a right child (D). Using this bijection,

the lazy diagonal flip or node rotation walk corresponds to the following Markov chain

on Catalan strings:

• From initial state x, pick a uniform random non-initial U entry of x (say, at

index i). Let σi,j = (i i+1 . . . j) ∈ S2n denote the “insertion” move which

removes element j > i and reinserts it before element i.

• If xi−1 = D, let j be the first index of the shortest balanced substring ending

with step i−1, and let x′ = σj,i(x) (that is, remove the U at index i and reinsert

it before the substring).

• If xi−1 = U, let j be the last index of the shortest balanced substring starting

with step i. Let x′ = σ−1
i−1,j(x) (that is, remove the U at index i− 1 and reinsert

it after the substring).

• The next state is either x or x′ with equal probability.

A slightly different description of this correspondence is given in [11].

To see that the index j is always well-defined, it is useful to think of the elements

as matched parentheses, in which case j is just the index of the parenthesis matching

either xi−1 or xi. Furthermore, since we can think of the move as removing and

reinserting a balanced substring, the string x′ is always balanced and so there is

no need for censoring. Note that while the transitions of the diagonal flip walk (as

realized on Catalan strings) can be expressed as permutations of the string, this walk

is not in the class we have mentioned before of walks given by generators of S2n, since

in this case the permutations (insertions) which are available depend on the current

state. In particular, we can only pick an index containing a U to remove, and it can

only be reinserted in one or two particular locations which depend on the current

string.
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In 1988 Sleator et al. [67] showed that the diameter of the transition graph of

the diagonal flip walk on triangulations of order n is 2n − 6 (for large enough n),

which immediately gives an Ω(n) lower bound on the mixing time for this walk. The

best known lower bound on the mixing time is Ω(n3/2), due to Molloy et al. [56].

In the same work they also gave a very large polynomial upper bound, which was

quickly improved by McShine and Tetali [55] to an Ω(1/n4) bound on the spectral

gap and O(n5) for the mixing time, using comparison to adjacent transpositions via

a canonical paths argument and, implicitly, the equivalent walk bijected to Catalan

strings. Molloy et al. also mention empirical evidence for a conjecture of Aldous that

their lower bound is close to the truth:

Conjecture 2.18 ([2]). The mixing time of the diagonal flip walk is O(n3/2 log n).

One would think that it would be yield better results to compare to a Markov

chain with more transitions and a better mixing time, as opposed to the adjacent

transposition walk which has few moves and a long mixing time. However, to date

our efforts to improve this bound by using a comparison with random transposi-

tions instead have failed, whether using the known bounds for random transpositions

described in Chapter 3 or even the conjectured O(n log n).

2.2.4 Noncrossing matchings and noncrossing partitions

Definition 2.19. A noncrossing matching (or noncrossing chord diagram) of order

n is a perfect matching M on the points [2n] with no crossings, i.e., pairs (chords)

{i, j}, {i′, j′} ∈M such that i < i′ < j < j′.

Note that each chord {i, j} in a noncrossing matching has endpoints of opposite

parities, since the points in the interval [i + 1, j − 1] must have a perfect matching

(they cannot be matched to anything outside of the interval).

Definition 2.20. A noncrossing partition of order n is a partition P of [n] with no
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crossings, i.e., i < i′ < j < j′ such that i, j ∈ P ∈ P are both in one block of P and

i′, j′ ∈ P ′ 6= P are both in a different block.

There is a natural bijection between noncrossing matchings and noncrossing par-

titions given by treating the pairs of the matching as boundaries of the parts (see

Figure 1(c).)

A natural Markov chain on noncrossing matchings is as follows:

Definition 2.21. From an initial noncrossing matching M , a step of the (lazy) chord

swap walk on noncrossing matchings is as follows:

• Pick uniform random even indices i, i′ ∈ [2n] and let j, j′ be their (odd) matches

(i.e., {i, j}, {i′, j′} ∈M).

• Let M ′ = M ∪{{i, j′}, {i′, j}} \ {{i, j}, {i′, j′}} be M with the endpoints of the

two chords rematched (respecting parity).

• If M ′ is noncrossing, the next state is either M or M ′ with equal probability.

Otherwise, if M ′ has crossings, the next state is M .

Once again, the Markov chain is censored to maintain the noncrossing property.

There is a similar Markov chain on noncrossing partitions:

Definition 2.22. From an initial noncrossing partition P , a step of the (lazy) merge/

split walk on noncrossing partitions is as follows:

• Pick two uniform random elements i, i′ ∈ {1, . . . , n}, and let P, P ′ ∈ P be the

blocks containing them. (Without loss of generality, assume i ≤ i′.)

• If P = P ′, let Q1 = P \ [i + 1, i′] and let Q2 = P ∩ [i + 1, i′]. Let P ′ =

P ∪ {Q1, Q2} \ {P} be the noncrossing partition obtained by splitting P into

two parts determined by i and i′.
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i i′

Figure 6: A move of the chord swap and merge/split chains on noncrossing matchings
and noncrossing partitions.

• If P 6= P ′, let P ′ = P ∪{P ∪P ′} \ {P, P ′} be the partition obtained by merging

parts P and P ′.

• If P ′ is noncrossing, the next state is P or P ′ with equal probability. Otherwise,

if P ′ has crossings, the next state is P .

Identifying noncrossing matchings and partitions via the bijection above, these two

Markov chains have the same transition graph, but with slightly different transition

probabilities. Indeed, if we restrict the merge step to only occur in the case where

i is the largest element in P which is less than every element of P ′ and i′ is the

largest element of P ′, then the transition in the merge/split chain obtained by picking

elements i, i′ corresponds precisely to the transition in the chord swap chain obtained

by picking indices 2i, 2i′.

Possible applications of this walk lie, for example, in the simulation of DNA fold-

ing, where such matchings can represent bonds between complementary base pairs

[40]. Analysis of the chord-swap chain could also shed light on enumeration of mean-

ders [41].

Like several of the walks already mentioned, the transition graph of the merge/

split walk is also the Hasse diagram of a lattice, this time the Kreweras lattice of

noncrossing partitions ordered by refinement (which is a sublattice of the Tamari

lattice [47]).

One correspondence between chord diagrams and Catalan strings considers each
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left endpoint of a chord as an opening bracket and each right endpoint as a closing

bracket. In this way the chord swap walk corresponds to the following walk on Catalan

strings (from initial state x):

• Pick a uniform random even index i and a uniform random odd index j ∈ [2n],

and let x′ = τi,j(x).

• If the substring between indices i and j is balanced and x′ is valid, the next

state is x′.

Note that this walk is not explicitly lazy, but its transition graph is the same

as that of the chord swap walk, and each (allowable) x′ in this walk occurs with

probability 1/n2, whereas each allowable M ′ in the chord swap walk occurs with

probability 2/n2 (since the two chords can be chosen in either order).

The possible transitions in the chord swap walk are a subset of the transitions

in the random transposition walk, and contain all of the adjacent transpositions.

Therefore the argument in Proposition 2.11 applies to this case as well, and so it is

easy to see that the same O(n4 log n) upper bound on the relaxation time holds for

chord swaps, and similarly that the relaxation time for chord swaps is at least that

of random transpositions. Weconjecture that the actual mixing time is somewhere in

between these two bounds.

Conjecture 2.23. The mixing time of the chord swap walk is Θ(n2 log n).

Bernardi & Bonichon [11] give a different bijection between noncrossing partitions

and Catalan strings (that is, a bijection which is not the composition of the two bijec-

tions above): one can also construct a noncrossing partition from a Catalan string by

labeling the pairs of brackets in the order they are opened and partitioning [n] into

sets corresponding to sequences of consecutive closing brackets. By this bijection,

a move of the merge/split walk corresponds instead to swapping a sequence of con-

secutive down-steps with a Catalan substring directly either preceding or following
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it.

2.2.5 Pattern-avoiding permutations

The final Catalan realization we will touch upon is that of pattern-avoiding permu-

tations.

Definition 2.24. A 312-avoiding permutation (PAP) of order n is a permutation

σ ∈ Sn with no i < j < k such that σ(i) > σ(k) > σ(j) (i.e., avoiding the pattern

312).

A natural bijection between Catalan strings and 312-avoiding permutations is as

follows: Given a Catalan string (thought of as matched pairs of brackets), label the

pairs of brackets in the order that they are opened. A corresponding 312-avoiding

permutation is given by the order in which the brackets are closed. While we have

been writing elements of the permutation group Sn in cycle notation, we will usually

think of a 312-avoiding permutation x as the string (x(1), x(2), . . . , x(n)).

As with the other string-like Catalan realizations, we can devise natural Markov

chains from generators of the permutation group. Here we will consider random

and adjacent transpositions, but other generators (such as insertions) may also be

interesting.

If we use arbitrary transpositions on 312-avoiding permutations, the resulting

moves correspond precisely to the Catalan string transpositions τi,j with i < j such

that the substring strictly between indices i and j is of the form UkDk for some

k. That is, the allowable transitions of the PAP random transposition walk are a

subset of those in the chord swap walk, and are a superset of those in the adjacent

transposition walk on Catalan strings. Since there are only O(n) available moves

from any given state and once again the adjacent transpositions are all included, the

relaxation time of the PAP random transposition walk is polynomial and at most

O(n3 log n).
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Each adjacent transposition on a 312-avoiding permutation corresponds to an

adjacent transposition on Catalan strings, but adjacent transpositions on Catalan

strings may correspond to nonadjacent transpositions on 312-avoiding permutations.

Despite the heavily restricted moves, this walk still has the potential to be inter-

esting. For now we will just show that it is ergodic.

Proposition 2.25. Adjacent transpositions connect the space of 312-avoiding permu-

tations.

Proof. We will give a path from each PAP x to the identity permutation, by induction

on n. This is trivial for n ≤ 2. For larger n, let i be the index containing entry 1

and let a = (x1, . . . , xi−1) and b = (xi+1, . . . , xn). Every element of a is less than

every element of b, and a and b are themselves 312-avoiding, so a is a 312-avoiding

permutation of [2, k] and b is a 312-avoiding permutation of [k+1, n]. Inductively use

adjacent transpositions to sort a and b, yielding (2, 3, . . . , k, 1, k+1, . . . , n). Then use

adjacent transpositions to move the element 1 to the left into its proper position.

2.2.6 Recursive decomposition of Catalan structures

We should mention one aesthetically appealing approach to bounding mixing times

which could be generally applicable to nearly any Catalan structure. It is well-known

that for n ≥ 1 the Catalan numbers satisfy the recurrence

Cn =
n∑
i=1

Ci−1Cn−i,

which is evidenced in almost every Catalan realization Cn by a natural bijection

Cn →
⋃n
i=1(Ci−1 × Cn−i) (for n ≥ 1) or in other words a canonical decomposition

of each structure of order n into two structures of total order n − 1 (with an extra

element used as “glue”). For example, a nontrivial binary plane tree consists of a left

subtree and a right subtree (either or both of which may be trivial), held together

by a single extra internal vertex (the root). Similarly, any Catalan string x can be
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(a) Catalan string and Dyck path (b) Triangulation (c) Chord diagram

Figure 7: Recursive decompositions of some Catalan structures. The “glue” is colored
red.

written uniquely as the concatenation UaDb, where a and b are again (possibly empty)

Catalan strings; a triangulation can be decomposed into triangulations of two smaller

polygons by removing the triangle containing its base.

Natural Markov chains on Catalan structures tend to respect this recursive de-

composition, in that a valid transition from (x, y) ∈ Ci−1×Cn−i consists of either (a)

making any valid move on either x or y or (b) moving to some element of Cj−1×Cn−j

for j 6= i.

It is common to exploit recursive structure in bounding mixing times, and indeed

both the triangulation bound of [56] and the balanced matroid bounds of [29, 43, 44]

(which we will use in Chapter 3) exploit different recursive structures of those objects.

A more general Markov chain decomposition method is given in [52].

tmix bounds

Walk Max deg. Diameter Lower Upper Conjecture

Catalan adj. trans. 2n− 3 n(n−1)
2

2n3 logn
π2

n3 logn
π2

n3 logn
π2

Catalan rand. trans. (n− 1)2 n− 1 Ω(n) O(n2 log n) Θ(n log n)

Diagonal flip n− 1 2n− 6 Ω(n3/2) O(n5) Θ(n3/2 log n)

Chord swap n(n−1)
2

n− 1 Ω(n) O(n4 log n) Θ(n2 log n)

PAP adj. trans. n− 1 (n− 1)2 Ω(n2) ? ?

PAP rand. trans. 3(n− 2)
⌈3(n−2)

2

⌉
Ω(n) O(n3 log n) ?

Table 1: Summary of Catalan walks with known and conjectured bounds.
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CHAPTER III

MIXING FOR CATALAN RANDOM TRANSPOSITIONS

In this chapter, we describe progress towards pinning down the mixing time of the

random transposition walk on Catalan strings. Our main result is an O(n2 log n)

upper bound on the mixing time of the random transposition walk on Catalan strings

of order n. The proof relies on a rephrasing of the walk as a basis exchange walk on a

balanced matroid. In Section 3.1 we describe the Catalan matroid (due to Ardila [6])

and the prior work [29, 44, 43] regarding mixing times for the basis exchange walk

on balanced matroids. All that remains to bound the mixing time of our Dyck path

walk is the proof in Section 3.2 that the Catalan matroid is balanced.

Although our focus is the transposition walk on Dyck paths, our analysis will

actually extend to a broader class of walks. A lattice path of length m is a string

P ∈ {1,−1}m (as before, we will frequently write U and D for up and down in place

of 1 and −1). The height of P at index i is hP (i) =
∑i

j=1 xi, and we can draw P on

the grid as the graph of hP . Lattice paths include Dyck paths, and of course a Dyck

path of order n is just a lattice path P of length 2n with hP ≥ 0 and hP (2n) = 0. We

will refer to a lattice path P of length m as a lattice path from (0, 0) to (m,hP (m)).

From this we can define a partial order on the set of lattice paths from (0, 0) to

(m, 2r−m) by letting P ≤ Q whenever hP ≤ hQ, pointwise. Note that P ≤ Q if and

only if qi ≤ pi for all i ∈ [r], where pi (resp. qi) is the index of the ith up-step in P

(resp. Q). This partial order is in fact a lattice1 with maximal element UrDm−r and

minimal element Dm−rUr. This also gives another characterization of Dyck paths as

lattice paths P from (0, 0) to (2n, 0) with P ≥ (UD)n.

1Apologies for the overlap in terminology.
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We have already mentioned the random transposition walk on lattice paths from

(0, 0) to (2n, 0), and that the generalization of this walk to lattice paths from (0, 0)

to (m,h) is equivalent to the Bernoulli-Laplace model on
(

[m]
r

)
, where r = (h+m)/2

is the number of up-steps in every such path, which has been studied extensively [27].

The adjacent transposition walk on all lattice paths has been thoroughly analyzed in

[71]. The analysis of the upper bound for adjacent transpositions applies just as well

to the case where the walk is censored to remain in the poset interval [P,Q] for some

pair of lattice paths P < Q. Our goal in this chapter is to give corresponding bounds

for the random transposition walk censored to [P,Q].

3.1 Lattice path matroids

3.1.1 Matroids and the basis exchange walk

Recall that a nonempty set B ⊆ 2U is the set of bases of a matroid M = (U,B) if the

following basis exchange axiom holds:

Matroid Basis Exchange Axiom. For any bases A,B ∈ B and every

e ∈ A \B there exists f ∈ B \ A such that A \ {e} ∪ {f} ∈ B is a basis.

Among other things, this axiom guarantees that all bases have the same cardinality,

which is the rank of M .

We will also make use of two dual operations on matroids: contraction and dele-

tion.

Definition 3.1. For a matroid M = (U,B) and an element e ∈ M , the matroid M

contract e is Me = (U,Be), where Be = {B ∈ B : e ∈ B}. Similarly, M delete e is

M e = (U,Be), where Be = {B ∈ B : e 6∈ B}.2

2Note that this definition differs slightly from the usual one, in which the element e being con-
tracted or deleted is removed from the ground set. In our case it will be convenient to leave e
in place, so as to more easily identify Be ⊆ B and preserve identities such as B = Be ∪ Be (with
Be ∩ Be = ∅).
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The results of contraction and deletion are again matroids, and a minor of M

is any matroid which can be obtained from M through a series of contractions and

deletions.

The order in which contractions and deletions are performed does not matter, so

we will write MJ
I for the matroid obtained from M by contracting the elements in I

and deleting the elements in J , and BJI will denote the set of bases of MJ
I .

Given a matroid M , Feder and Mihail [29] study the following basis exchange walk

on the state space B of bases:

From state B ∈ B,

• Pick uniform and independent random elements a ∈ U and b ∈ B,

and let B′ = B ∪ {a} \ {b}.

• If B′ ∈ B then the next state is either B or B′ with equal probability,

otherwise the next state is B.

The matroid basis exchange axiom guarantees that the transitions connect the state

space, and since the walk is symmetric and lazy its stationary distribution is uniform.

It is tentatively conjectured that the basis exchange walk is fast for any matroid

(i.e., the mixing time is bounded by some polynomial in m = |U |), but there is little

evidence in favor of this.

On the other hand, [29] introduced the notion of balanced matroids, which capture

the notion that for a randomly chosen basis (of the matroid or any of its minors),

conditioning on the occurrence of one element (in the basis) can only make the occur-

rence of any other less probable. They show that for the case of balanced matroids

the walk is indeed rapidly mixing, by using decomposition techniques to bound its

spectral gap.

Definition 3.2. A matroid M = (U,B) is negatively correlated if for every pair of
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distinct elements e, f ∈ U

|Be|
|B|
≥ |Bef |
|Bf |

. (1)

The matroid M is balanced if M and all of its minors are negatively correlated.

Negative correlation is equivalent to the very natural condition that for a uniform

random basis B ∈ B, Pr[e ∈ B] ≥ Pr[e ∈ B|f ∈ B].

Indeed, many common classes of matroids are balanced, including uniform ma-

troids (whose bases are all size-r subsets of the ground set), graphic matroids (with

the ground set being the edges of a connected graph and the bases being spanning

trees of the graph), matroids of rank ≤ 3, and regular matroids (matroids which can

be represented over every field) [29, 19]. We will rely on the following extension of

Feder and Mihail’s result for balanced matroids, due to Jerrum and Son.

Theorem 3.3 ([43]). The spectral gap γ and log-Sobolev constant α for the basis

exchange walk on a balanced matroid M of rank r on a ground set of size m are lower

bounded by

γ ≥ 2

mr
and α ≥ 1

2mr
.

In particular, by Theorem 2.4 the bound on the log-Sobolev constant implies

that the mixing time of the basis exchange walk on a balanced matroid is at most

O(mr log log|B|).

3.1.2 The Catalan matroid and other lattice path matroids

To aid our setting of the Catalan transposition walk in terms of matroids, we refer to

the observation (made independently by Ardila [6] and Bonin and De Mier [14]) that

the set of Dyck paths can be thought of as bases of a matroid.

Definition 3.4. The Catalan matroid of order n is C(n) = ([2n],B(n)), where the

elements of B(n) are the index-sets of up-steps in Dyck paths of length 2n.
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1 2 3 4 5 6 7 8 9 10111213141516

Figure 8: The Dyck path (UUUUDUDUUDDDUDDD) above corresponds to the basis
{1, 2, 3, 4, 6, 8, 9, 13} of the Catalan matroid of order 8.

The Catalan matroid is actually the transversal matroid for the set system S =

{[1], [3], . . . , [2n− 1]} (that is, its bases are the systems of distinct representatives of

S). In short, the representative of the set [2i− 1] will be the index of the ith up-step

in the corresponding Dyck path (although this assignment of distinct representatives

need not be unique). Indeed,

Observation 3.5. The basis exchange walk on the Catalan matroid is exactly the

random transposition walk on Catalan strings.

In other words, given Theorem 3.3, to obtain a mixing time bound for the Dyck

transposition walk it suffices to show that the Catalan matroids are balanced.

To this end, it would be convenient if the Catalan matroids belonged to some

known class of balanced matroids. The most general class of matroids known to be

balanced is regular matroids, but Ardila shows that C(n) is not representable over

any Fq for q ≤ n − 2 and thus is not regular. Transversal matroids also need not

be balanced in general: Choe and Wagner [19] give a transversal matroid of rank 4

which is not balanced.

Thus the bulk of our work here will be to show that the Catalan matroid is

balanced, and from this the main mixing result will follow immediately. For our

later discussion it will help to work with a minor-closed class of matroids (which the

Catalan matroids certainly are not). Bonin and de Mier ([14]) discuss the following

class of lattice path matroids, which generalize the Catalan matroids by allowing any

pair of bounding paths.
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Definition 3.6. For two lattice paths A ≤ B from (0, 0) to (m, 2r − m), consider

the set [A,B] of lattice paths P from (0, 0) to (m, 2r − m) with A ≤ P ≤ B. The

lattice path matroid L[A,B] (which is of rank r on ground set [m]) has as its bases

the index sets of up-steps of paths in [A,B].

Although it is not immediately obvious that L[A,B] is a matroid, [14] observes

that in fact the lattice path matroid L[A,B] is the transversal matroid of the set

system {[a1, b1], [a2, b2], . . . , [ar, br]}, where ai (resp. bi) is the index of the ith up-step

in A (resp. B). Indeed, it is shown in that paper that the transversal matroids of set

systems {[a1, b1], [a2, b2], . . . , [ar, br]} with a1 ≤ a2 ≤ · · · ≤ ar and b1 ≤ b2 ≤ · · · ≤ br

are precisely the lattice path matroids3. The class of basis exchange walks on lattice

path matroids also includes the (unconstrained) Bernoulli-Laplace model as the basis

exchange walk on a uniform matroid.

In addition to showing this correspondence, Bonin and de Mier show that the class

of lattice path matroids is closed under taking minors and duals. They also define a

smaller (in fact, minimal) minor-closed class of matroids containing Cn, which they call

generalized Catalan matroids, consisting of the lattice path matroids L[A,B] where

A = (U)r(D)m−r is the maximal path among all paths from (0, 0) to (m, 2r − m).

Indeed, Sohoni [68] has actually already shown the balanced property of generalized

Catalan matroids, although he calls them Schubert matroids and does not link his

result to rapid mixing of the Catalan random transposition chain (although he does

mention the Catalan adjacent transposition chain). Our proof applies to the more

general class of lattice path matroids.

Since the class of lattice path matroids is minor-closed, for our main result it

suffices to show that lattice path matroids are negatively correlated. However, it is

worth noting that the same method can also be used to show negative correlation

3The set system of this form corresponding to a given lattice path matroid may not be unique;
for example, the Catalan matroid is the transversal matroid for both {[1], [3], . . . , [2n− 1]} and
{[1], [2, 3], . . . , [n, 2n− 1]}.
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directly for any minor of a lattice path matroid, by restricting certain indices to

always have up- or down-steps as necessary.

3.2 Mixing bound for random transpositions

To show negative correlation for lattice path matroids, it will be convenient to use

an equivalent formulation of (1), which is easily obtained by repeatedly applying the

identity |B| = |Be|+ |Be|:

|Bef ||Bef | ≤ |Bfe ||Bef | . (2)

Now we are ready to prove

Theorem 3.7. For every pair of lattice paths A ≤ B from (0, 0) to (m, 2r −m) the

lattice path matroid L[A,B] is negatively correlated.

Proof. Let L[A,B] = ([m],B) be any lattice path matroid.

To prove inequality (2) for every pair e < f ∈ [m], we will construct an injective

map

ϕef : Bef × Bef → Bfe × Bef .

Note that we can associate members of these sets with lattice paths in L[A,B] by

• Bef : paths with up-steps at indices e, f ,

• Bef : paths with down-steps at indices e, f ,

• Bfe : paths with an up-step at index e and a down-step at index f , and

• Bef : paths with a down-step at index e and an up-step at index f .

Let P ∈ Bef and Q ∈ Bef be lattice paths and consider the following cases. (The

figures shown are for the Catalan matroid.)
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Case 1. Suppose the paths P,Q intersect (without necessarily crossing) in the region

(I) between e and f . Note that this includes all cases where the path P is below

Q at e and above Q at f or vice versa. Take the first such intersection point x

in (I) and switch the paths P,Q after x to obtain new paths P ′ ∈ Bfe , Q′ ∈ Bef

as shown in Figure 9. Set ϕef (P,Q) = (P ′, Q′).

e f(I)

P

Q x
e f(I)

P ′
Q′ x

Figure 9: The injection for Case 1.

Case 2. Suppose the paths do not meet in region (I) and consider the paths P,Q

in the region (II) after position f . Imagine translating the fragment of path Q

after f to P so that their initial points in f coincide. If the imaginary fragment

intersects P , let x be the first such point of intersection. Construct new paths

P ′, Q′ by swapping the segments of P and Q between f and x (including f

itself). See Figure 10. If the new paths P ′, Q′ are both between A and B (so

that P ′ ∈ Bfe and Q′ ∈ Be
f ), then we set ϕef (P,Q) = (P ′, Q′).

e f (II)

P

Q

x
e f (II)

P ′
Q′

x

Figure 10: The injection for Case 2.

Case 3. Otherwise, perform the mirror image of the operation from Case 2 in the part

(III) up to position e, as shown in Figure 11 and again set ϕef (P,Q) = (Q′, P ′).

Case 1 covers all pairs of paths P,Q such that P is above Q at e and below it at

f or vice versa. Case 2 covers all remaining pairs of paths with P above Q at f , since

in this case the fragment of Q must intersect P and both resulting paths (P ′, Q′) are
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e f(III)

P

Q x

e f(III)

Q′
P ′ x

Figure 11: The injection for Case 3. Case 2 fails because the translated segment of
Q leaves the valid region before intersecting Q.

between P and Q. Finally, Case 3 covers all still remaining pairs of paths with P

below Q at e. Hence every pair of paths P,Q is covered by one of these cases.

Finally we must argue that ϕef is injective. Given P ′, Q′ we must be able to

determine which case above was applied to produce them, and from this it is simple

to recover P and Q. Since we know e, f it is easy to identify the regions (I), (II) and

(III) in the three cases. If P ′, Q′ intersect in region (I) then they must have come

from Case 1, as neither of the later cases can produce such an intersection. If they

do not, first try to apply the inverse operation for Case 2, which is the same as the

forwards operation; if this was not possible for the starting paths P,Q then it is not

possible for P ′, Q′ either (as performing the transformation of Case 3 cannot cause

the transformation of Case 2 to become valid if it was not already), so if we have a

pair of paths P ′, Q′ for which the second move is possible and does result in lattice

paths between A and B then we know we must have arrived at it through Case 2.

Otherwise, we were in Case 3. See Figure 12.

Q′
P ′

Figure 12: An example of recovering the case from the result. Since the paths do
not intersect in region (I) we must have come from Case 2 or 3. Case 2 fails because
the translated segment of P ′ leaves the valid region before rejoining Q′, so the paths
must have come from Case 3. Note that the transformation φef is usually not onto.
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Remark 3.8. Since Case 1 can be applied whenever P is above Q at e and below at

f or vice versa, Case 2 can be applied whenever P is above Q at both e and f , and

Case 3 can be applied whenever P is below Q at both e and f , it is tempting to try

to divide the cases more naturally according to the relative heights of P and Q at e

and f . However, note that in Cases 2 and 3 (and sometimes Case 1) the resulting

paths P ′, Q′ always have P ′ above Q′ at both e and f , and this more natural division

of cases does not allow us to recover uniquely which transformation was applied.

34



CHAPTER IV

CENSORED RANDOM WALKS

4.1 Monotone censoring

Most of the Markov chains we have mentioned on Catalan structures take transitions

inspired by previously studied random walks and implement an extra censoring step

to ensure that the walk remains within the Catalan space. That is, they are censored

versions of Markov chains which tend to be more amenable to analysis. In this chapter,

we give a general framework for censored Markov chains and discuss conditions under

which mixing properties of a censored chain can be derived from the mixing properties

of the original.

Definition 4.1. Let P be the transition matrix of a Markov chain on state space Ω

and let A ⊂ Ω. The Markov chain censored to A is the following Markov chain on

state space A:

• From state x ∈ A, draw x′ ∈ Ω from distribution P (x, ·).

• If x′ ∈ A, the next state is x′. Otherwise the next state is x.

The two processes coincide unless the original process tries to leave the set A, in

which case the move is censored and the new chain remains where it is. This model

is very general and also very common, encompassing the usual Markov chains for

sampling independent sets and matchings inspired by statistical physics, as well as

a broad array of other structures [39, 36, 58]. Relevant to this work, the Catalan

random transposition chain is just the Bernoulli-Laplace process censored to Catalan

strings. Similarly, the chord swap walk can be though of as a censoring of a walk

on all perfect matchings in the complete bipartite graph Kn,n (equivalent to random
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transpositions in Sn). The merge/split walk can be thought of as a censoring of a

merge/split walk on all partitions of [n], and the walks we described on 312-avoiding

permutations are censored versions of well-studied walks on the symmetric group Sn.

Of course, in order to get any fast mixing guarantees for a censored walk, there

must be some sort of requirements on A, since a priori it is possible that the transition

graph restricted to A is not even connected. The overarching question we explore in

this chapter is:

Question 4.2. What are sufficient conditions to be able to bound the mixing time of

a censored Markov chain in terms of the original, uncensored chain?

Ding and Mossel [28] give one example of such a bound for walks on the hypercube

in the case that the chain is restricted to a monotone1 subset of the state space.

Theorem 4.3 ([28]). For any monotone set A ⊆ {±1}n, the Markov chain on Qn

censored to A satisfies

Φ ≥ π(A)

16n
,

and so

tmix ≤ O

(( n

π(A)

)2

log|A|
)
.

As we will show, their result extends to monotone subsets of any distributive

lattice, provided that a certain monotonicity testing property of the uncensored chain

holds. In short, the property says that it should be possible (with high probability)

to test monotonicity of any subset of the state space by observing the endpoints of

randomly chosen transitions of the Markov chain.

While we will also show that the result of [28] is asymptotically tight for the

conductance of monotone subsets of the cube, it does not seem to give the correct

mixing time bound, which we conjecture to be O(n log n/µ(A)).

1By convention, we will take monotone to mean monotone increasing, i.e., if x < y then x ∈
A =⇒ y ∈ A.
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To get a slightly improved bound, we next give a canonical paths argument which

bounds the spectral gap for monotone subsets of the hypercube by O(n2/µ(A)), im-

proving the mixing time result to O(n2 log|A|/µ(A)). The 1/µ(A) factor is tight (for

both the spectral gap and the mixing time), but it seems likely that the dependence

on n could be improved.

In a similar vein, Mathieu [53] gives an Ω(1/n) bound on the spectral gap and log-

Sobolev constants of censored walks on the cube under the more stringent condition

that the subset A is monotone and contains the middle layers: A must contain every

x with at least (1
2
− ε)n ones for some constant ε > 0. The argument hinges on

the fact that such a walk would spend most of its time among the middle layers of

the cube even without any censoring. While this is at face value a much stronger

assumption than the mere monotonicity of [28], the same argument seems to apply

as well to sets of the form A∩B where A is monotone increasing and B is monotone

decreasing, so long as there is a constant-sized band around the middle layers which

remains uncensored.

In this chapter we will mostly discuss the case of censoring a walk on the Hasse

diagram of a poset lattice to some monotone subset. The monotonicity requirement

is enough to guarantee that the censored walk is connected, since it guarantees that

there is a path from every point to the maximum of the lattice. Indeed, as mentioned

in Chapter 2 many of the Catalan chains we are interested can be thought of as walks

on the Hasse diagram of a lattice or as a censored version of such a walk (or both).

It is worth noting that much of the analysis below for lattices in general also applies

to walks on any subgraph of the comparability graph containing the Hasse diagram.

For example, while the Catalan adjacent transposition walk is a monotone censoring

of the random walk on the Hasse diagram of all lattice paths ordered by height (as in

Chapter 3), the Catalan random transposition walk allows transitions also between

other comparable pairs.
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Unfortunately, these results are difficult to apply fruitfully to the Catalan walks

we have mentioned. The first hurdle is that the relevant lattices are not distributive.

Even if they were and we could prove monotonicity testing, the results would still be

very weak, since in most cases (except Catalan strings) the Catalan class is only an

exponentially small portion of the uncensored lattice.

4.2 Conductance bound from monotonicity testing

Let G = (L,E) be a d-regular directed (acyclic) graph whose transitive closure is a

distributive lattice L. We consider the random walk on undirected edges of G with

transition probability 1/d. For a subset A ⊆ L, the walk censored to A is just the

random walk on the subgraph G[A] induced by A with the same transition probability

1/d. Note that the assumption of d-regularity and uniform edge probability is without

much loss of generality: since we do not require the graph to be simple we can phrase

any symmetric Markov chain on L with rational transition probabilities in this way

by duplicating edges and adding loops.

We will give a lower bound on the edge expansion

φA(S) :=
∂A(S)|A|
d |S||A \ S|

where ∂A(S) is the number of edges in G[A] (or equivalently in G) with one endpoint

in S and the other in A \ S. Note that since ∂A(S) = ∂A(A \ S) the edge expansion

is related to the conductance by

Φ = min
S⊆A

|S|≤|A|/2

∂A(S)

d |S|
≥ min

S⊆A
φA(S),

and in fact the minimum of φA(S) differs from Φ by no more than a factor of 2.

Let ⊕ denote symmetric difference and write

δm(S) = min
S′ monotone

|S ⊕ S ′|
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for the distance between S and the nearest monotone set and

εm(S) = |{(x, y) ∈ E : x < y, x ∈ S, y 6∈ S}|

for the number of edges of G on which S violates monotonicity, i.e., increasing edges

leaving G.

Definition 4.4. The graph G is β-testable if for any S ⊆ L, the probability of

detecting non-monotonicity of S by observing its values on a uniform random edge

(x, y) of G satisfies

Pr
x<y∈E

[x ∈ S, y 6∈ S] =
2εm(S)

d|L|
≥ β

δm(S)

|L|
.

This is a fairly natural condition, and indeed Goldreich et al. show that the

Boolean cube is (2/n)-testable [37]. We will show that this sort of testability property

suffices to give the following extension of Ding and Mossel’s result.

Theorem 4.5. If G is β-testable and A is a monotone subset of L then

Φ(GA) ≥
(
β

8

)
|A|
|L|

.

Proof. Suppose that G is β-testable. That is, for every S ⊆ L we have

εm(S) ≥ βd

2
δm(S).

Note that since A is monotone, for any S ⊆ A we have εm(S) ≤ ∂A(S) (as any

increasing edge leaving S in G is also an edge of GA leaving S.) In fact, the edges

between S and A \ S are precisely the increasing edges leaving S and the increasing

edges leaving A \ S, so ∂A(S) = εm(S) + εm(A \ S).

Consider nonempty S ⊂ A, and let T = A\S. First we claim that S and T cannot

both be close to monotone increasing. In particular, there cannot exist monotone sets

S ′, T ′ ⊆ L such that

|S ⊕ S ′| < |S||T |
4|L|

and |T ⊕ T ′| < |S||T |
4|L|

.
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Indeed, if such S ′, T ′ existed, then we would have

|S| − |S ′| ≤ |S ⊕ S ′| < |S||T |
4|L|

≤ 1

4
|S|

and so |S ′| > 3
4
|S|. Similarly for T we would have |T ′| > 3

4
|T |. Since S ′ and T ′ are

monotone subsets of a distributive lattice the well-known FKG inequality [30] gives

|S ′ ∩ T ′| ≥ |S
′||T ′|
|L|

≥
( 9

16

) |S||T |
|L|

.

But now we have a contradiction, since

0 = |S ∩ T | ≥ |S ′ ∩ T ′| − |S ⊕ S ′| − |T ⊕ T ′| ≥
( 9

16
− 1

2

) |A||S|
|L|

> 0.

Hence it is either the case that |S ⊕ S ′| ≥ |S||T |
4|L| for every monotone S ′ ⊆ L or

|T ⊕T ′| ≥ |S||T |
4|L| for every monotone T ′ ⊆ L. Either way, we have for every nonempty

S ⊂ A

∂A(S)|A|
d|S||T |

=
|A|

d|S||T |
(εm(S) + εm(T ))

≥ β|A|
2|S||T |

(δm(S) + δm(T ))

≥ β|A|
2|S||T |

(
|S||T |
4|L|

)
=
β

8

(
|A|
|L|

)
,

so Φ(GA) ≥ β
8

(
|A|
|L|

)
as desired.

4.3 Monotone censoring and spectral gap

First of all, it is worth noting that while Ding & Mossel’s bound on the mixing time

may have room for improvement, the result about conductance is asymptotically tight

both in its dependence on n and on µ(A). On the one hand, for A = V (µ(A) = 1)

it is known that the conductance of the n-cube is 1/n. To see the tightness in µ(A)

consider the following example.

Example 4.6. Consider the case of a sum of two discrete cubes (say, k and ` cubes,

k ≤ `, k + ` = n) intersecting at one point. This structure can be embedded into Qn
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as the induced subgraph on a monotone set A = B ∪ C, where

B = {(1, . . . , 1, x) : x ∈ {±1}k} and C = {(y, 1, . . . , 1) : x ∈ {±1}`}.

Then µ(A) = (2k + 2`)/2n ≥ 2k/2n = 2−` and ∂A(C) = k, so

Φ(Qn[A]) ≤ ∂A(C)

n|C|
=

k

n2`
≤ 1

2`
≤ µ(A).

That is, if we wish to bound the mixing time tmix(A) of the random walk on the

cube restricted to A, then we cannot use conductance to give a bound better than

quadratic in 1/µ(A) and in n.

Therefore we would prefer to bound either the spectral gap or log-Sobolev constant

of the censored chain, which in turn would more tightly control the mixing time. It is

in fact possible to modify the proof of the previous section to give some bound on the

spectral gap, but the necessary testability property is much less natural than the one

we have used here and the method does not seem to yield an improved result even

for the Boolean cube. Instead, we give a canonical paths argument which is specific

to monotone subsets of the Boolean cube and yields a slightly improved mixing time

bound over that of Ding & Mossel.

The main lemma is as follows:

Lemma 4.7. Let A ⊆ {±1}n be a monotone set. Then there exists a set Γ =

{Γu,v}u6=v∈A of canonical paths between (ordered) pairs of points in A, each of length

≤ n, such that each (directed) edge of Qn is used at most 2n−1 paths.

Indeed, Lemma 4.7 allows us to apply Theorem 2.7 to compare the censored

random walk to the random walk on the complete (looped) graph with P (x, y) = 1/|Ω|

for all x, y ∈ Ω, which has spectral gap and mixing time 1. As a result,

Corollary 4.8. The random walk on the Boolean cube Qn censored to a monotone

subset A has spectral gap and mixing time satisfying

1

γ
≤ B =

n2

π(A)
and tmix ≤ O

(
n2

π(A)
log|A|

)
.
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This is an asymptotic improvement over Ding & Mossel’s result in the case where

π(A) = o(1). It is also possible to use this same set of canonical paths to give an

alternate proof of Ding & Mossel’s conductance result. On the other hand, the log-

Sobolev constant for the walk on the complete graph is order log|Ω|, so we actually

get a slightly worse mixing result using the log-Sobolev constant here.

To prove Lemma 4.7 we first prove the following.

Lemma 4.9. Let A ⊆ {±1}n be a monotone subset. It is possible to construct paths

in Qn[A] for each (ordered) pair of antipodal points in A in such a way that each path

has length exactly n and each (directed) edge belongs to at most one path.

Proof. We proceed by induction on n. For n = 1 the lemma is true. Suppose that

n > 1. Take A+ = {x ∈ A : xn = 1} and A− = {x ∈ A : xn = −1}. Clearly A+

and A− are monotone on {±1}n−1. From the inductive hypothesis we can construct

canonical paths of length n−1 between antipodal points in A+ and between antipodal

points in A− such that each edge is an element of at most one path. We consider

simultaneously the four points

x = (x1, . . . , xn−1, 1) −x = (−x1, . . . ,−xn−1,−1)

y = (x1, . . . , xn−1,−1) −y = (−x1, . . . ,−xn−1, 1).

If neither antipodal pair is in A then we have no paths to produce, so suppose without

loss of generality that x ∈ A+ and −x ∈ A−. Note that monotonicity of A implies

−y ∈ A+. Let us consider two cases.

(a) Suppose first that y 6∈ A, so that among these points we need only construct

the two paths γx,−x and γ−x,x. Indeed, we can take the paths

γx,−x = (x)→A+ (−y)→ (−x) γ−x,x = (−x)→ (−y)→A+ (x),

where we have used the known paths γx,−y and γ−y,x between antipodal points

in A+.
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(b) If y ∈ A− then we need to define the four paths

γx,−x = (x)→A+ (−y)→ (−x) γ−x,x = (−x)→A− (y)→ (x)

γy,−y = (y)→A− (−x)→ (−y) γy,−y = (−y)→A+ (x)→ (y),

where we have now used known paths between antipodal points in both A+ and

A−.

Clearly all of the paths constructed are of length n. In each case each directed

edge between ±x and ±y is used in at most one path, as is each of the inductively

assumed paths in A± (and hence each of the edges within A±). Thus this procedure

gives a set of paths joining antipodal points in A such that each directed edge belongs

to at most one path.

Now we can construct canonical paths for all of A.

Proof of Lemma 4.7. We define canonical paths for each pair x, y ∈ A as follows. Let

S be the set of coordinates (passive variables) where x, y agree and let T = [n] \ S

be the set of coordinates (active variables) where x, y differ. We use Lemma 4.9 to

define canonical paths simultaneously for all pairs of points that have fixed bits on

coordinates from S and are antipodal on coordinates from T . We use this construction

for each S ⊂ [n] and every setting of the fixed bits on S. This gives uniquely defined

paths joining any two points in A.

Now for any fixed edge x ∼ y in A we would like to recover all of the canonical

paths which might use the edge (x, y). There are 2n−1 possible choices of active and

passive variables (the variable on which they differ must be active). If we are given x,

y and the passive variables S, then we can recover the bits assigned to variables from

this set. We also know that the path connects antipodal points inside a sub-cube

generated by T = [n] \ S. Each edge from this sub-cube is used at most once in such

a path. Therefore there are at most 2n−1 paths going through each fixed edge.
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4.4 Further Work

To conclude, we list some interesting remaining open questions.

1. Can the canonical paths argument of Section 4.3 be extended to a larger class

of lattices? For example, it seems that the argument might adapt without too

much difficulty for the lattice [k]n (or perhaps more generally any product of

“nice” posets).

2. Can the 1/n2 factor in our bounds for the spectral gap or log-Sobolev constant

of a censored chain be improved to 1/n?

3. Are there conditions other than monotonicity which guarantee that censoring

does not greatly impede the mixing time of a Markov chain?

4. Can such a monotonicity argument yield an improved bound for any of the

Catalan chains in Chapter 2?
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PART II



CHAPTER V

THE UPPER MATCHING CONJECTURE

5.1 Matchings in regular graphs

One of the classic #P-hard problems is calculating the permanent of a {0, 1}-matrix

or, equivalently, counting the number of perfect matchings in a (balanced) bipartite

graph. Rather than tackling the hard problem of counting matchings in arbitrary

graphs we focus here on finding the extremal graphs for the number of matchings, that

is, the graphs which maximize the number of matchings subject to some constraint.

We will focus on graphs with a fixed degree sequence, but there has also been interest

in graphs with fixed numbers of vertices and edges [46].

We begin with some definitions.

Definition 5.1. A matching in a graph G is a set of pairwise disjoint edges. Write

φk(G) for the number of size-k matchings in G, φ(G) =
∑

k φk(G) for the total number

of matchings (including the empty matching), and Φ(G) = φn/2(G) for the number

of perfect matchings (where n is the number of vertices of G).

For the case of perfect matchings, the celebrated Bregman-Minc theorem gives

a tight bound on the permanent of a {0, 1} matrix with given row sums, showing

that among d-regular bipartite graphs on n = 2kd vertices the number of perfect

matchings is maximized for a disjoint union of complete bipartite graphs Kd,d.

Theorem 5.2 ([15]). Let G be a bipartite graph with bipartition A ∪B. Then

Φ(G) ≤
∏
v∈A

(d(v)!)1/d(v),

with equality when G is a disjoint union of complete bipartite graphs.
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Following an unpublished result of Kahn and Lovász, many works have inde-

pendently extended the Bregman-Minc theorem to graphs which are not necessarily

bipartite [5, 22, 32], yielding a general bound on the number of perfect matchings in

a graph with a given degree sequence which is tight precisely for unions of complete

bipartite graphs.

Recently, Davies et al. have shown that a similar extremal result holds not only

for the number Φ(G) of perfect matchings, but also for the total number of matchings

φ(G).

Theorem 5.3 ([23]). If G is a d-regular graph on n vertices, then

φ(G) ≤ φ(Kd,d)
n/2d.

In fact, their result is rather stronger: they show that kKd,d maximizes the match-

ing polynomial1

MG(λ) :=
∑
k

φk(G)λk.

Indeed, Friedland, Krop and Markström have conjectured that the same is true

not only for the entire matching polynomial but even a the level of its coefficients.

Conjecture 5.4 (Upper Matching Conjecture [31]). Among simple (bipartite) d-

regular graphs on 2kd vertices, the number of matchings of size t (t-matchings) is

maximized for a disjoint union of k copies of Kd,d.

Friedland et al. proved their conjecture for bipartite graphs in the cases d = 2 and

t ≤ 4, and of course the result is known for perfect matchings and for all matchings

both regardless of bipartiteness. There is also asymptotic evidence for the truth of

the (nonbipartite) upper matching conjecture for matchings of a fixed size [42, 18]

(see also [32]).

1There are several other definitions of the matching polynomial, all obtainable from each other
by suitable transformations, but this one will serve our purposes best.
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Friedland et al. also gave a lower matching conjecture, positing that the number

of t-matchings is minimized (among r-regular bipartite multigraphs) for a random

regular graph. This was first verified asymptotically [38], and has been recently

proven in its non-asymptotic form [21].

5.2 Matchings as subgraph counts

In this section we show how the argument of Friedland et al. that Conjecture 5.4 holds

for matchings of size ≤ 4 in bipartite graphs can be extended to the nonbipartite

setting.

Indeed, it is clear that among d-regular graphs the number of matchings of size 1

(edges) is independent of the graph. To see that the same is true of matchings of size

2, it suffices to consider all pairs of edges and subtract pairs of incident edges—both

of which are independent of the graph beyond its size and regularity. Friedland et

al. extend this argument up to matchings of size 4. We will give a generalization of

this argument which proves Conjecture 5.4 for t ≤ 5 and further shows that Kd,ds has

the most matchings of each size ≤ 4 among all (not necessarily bipartite) d-regular

graphs on n vertices.

We will work in the somewhat more general setting of counting subgraphs of G

which are isomorphic to some fixed subgraph F . In the case where F = tK2 is a

disjoint union of t edges, subgraphs isomorphic to F are precisely matchings of size t.

First we define some useful functions for counting subgraphs in different ways. (The

reader may wish to refer to Section 1.2 for notation.)

Definition 5.5. A function χ : V (F ) → V (G) is a homomorphism from F to G

if {χ(u), χ(v)} ∈ E(G) whenever {u, v} ∈ E(F ). Denote the number of homomor-

phisms by hom(F,G).

Definition 5.6. A function χ : V (F ) → V (G) is an embedding of F into G if is an

injective homomorphism. Denote the number of embeddings by emb(F,G).
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Definition 5.7. Let sub(F,G) denote the number of (not necessarily induced) sub-

graphs of G isomorphic to F .

Clearly,

sub(F,G) =
emb(F,G)

emb(F, F )
, (3)

where emb(F, F ) is simply the number of automorphisms of F , so for a given subgraph

F it suffices to count embeddings in place of subgraphs. The various connections

between these functions are treated more thoroughly in Section 7.2 of [50], but for

our purposes it is sufficient to note that we can count homomorphisms according to

which vertices of F are mapped to the same image:

hom(F,G) =
∑
P

emb(F/P,G), (4)

where P ranges over all partitions of V (F ) and F/P is the graph obtained from F

by contracting each block of P to a single vertex (so we may think of the vertices of

F/P as the blocks of P , with two blocks adjacent if there is at least one edge in F

between them). The Möbius inversion of this identity is (see [9] for more details)

emb(F,G) =
∑
P

µp hom(F/P,G),

where

µP = (−1)n(F )−n(F/P )
∏
B∈P

(|B| − 1)!.

While we are mostly interested in subgraphs (and hence embeddings), homomor-

phisms are in some ways much easier to deal with. For example,

hom(F1 ∪ F2, G) = hom(F1, G) hom(F2, G).

Another advantage is that if we know that G is d-regular then the degree 1 vertices

of F contribute very predictably to hom(F,G). In particular,

hom(F,G) = dn(F )−n(F ∗)(n/d)cc(F )−cc(F ∗) hom(F ∗, G),
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where F ∗ is the graph which is obtained from F by iteratively removing degree 1

and 0 vertices until none remain and cc(G) is the number of connected components

of G. Adding back an isolated vertex contributes a factor of n to the number of

homomorphisms (as it can map to any vertex of G), while adding a vertex of degree

1 yields a factor of d (as it can map to any neighbor of its neighbor in F ). The graph

F ∗ is commonly known as the 2-core of H, since it is the largest subgraph of H with

no vertices of degree ≤ 1 (see [13]).

Let us return now to the identity (4). If F has t edges, then the possible graphs

F/P all have at most t edges (some edges may coincide). Of course, many different

partitions may yield the same graph H, but the number of such partitions depends

only on F and H. This means that for some constants cH we have

emb(F,G) =
∑

H: e(H)≤t

cH hom(H,G).

With embeddings now written in terms of homomorphisms we can remove the degree-

1 vertices.

emb(F,G) =
∑

H: e(H)≤t

cH dn(H)−n(H∗)(n/d)cc(H)−cc(H∗) hom(H∗, G).

Finally, we return to embeddings:

emb(F,G) =
∑

H: e(H)≤t

cH dn(H)−n(H∗)(n/d)cc(H)−cc(H∗)
∑
P ′

emb(H∗/P ′, G).

Unfortunately, it is not necessarily true that every vertex of H∗/P ′ has degree at

least 2, since it is possible for all neighbors of a vertex to be in the same block of

P . However, if this is the case then H∗/P ′ has strictly fewer edges than H. That is,

we have written emb(F,G) as a linear combination of terms emb(H,G), where H is

either a graph on t edges with no vertices of degree 1 or is a graph on strictly fewer

than t edges. That is, we have proven
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Lemma 5.8. If G is a d-regular graph on n vertices and F is any graph on t edges,

then there exist constants ĉH = ĉH(F, n, d) such that

emb(F,G) =
∑
H∈H

ĉH emb(H,G),

where H consists of graphs on ≤ t edges such that no graph on exactly t edges has

any vertex of degree ≤ 1.

The main theorem of this section is the following, which comes as a corollary

to Lemma 5.8 by a simple induction on t (we have already mentioned that such a

representation is easy if t = 1), along with an application of equation (3) to convert

embedding counts to subgraph counts.

Theorem 5.9. If G is a d-regular graph on n vertices and F is any graph, then there

exist constants cH = cH(F, n, d) otherwise independent of G such that

sub(F,G) =
∑
H∈H

cH(F, n, d) sub(H,G),

where the sum is over the set H of isomorphism classes of subgraphs of G with at

most t edges and no vertices of degree ≤ 1.

Note that the coefficients ĉH and cH are not generally the same, but they do

coincide when H has the same number of edges as F .

A similar theorem was actually shown by Beezer & Farrell [7, 8] in a paper we were

unable to access, although their intent was to invert the process to determine subgraph

counts from the matching polynomial. If we were willing to sacrifice linearity we could

also reduce this result further to rely only on counts for connected subgraphs, as in

[70].

For our application to the UMC we are interested in the particular case where

F = tK2 is a union of t disjoint edges, so that φt(G) = sub(F,G). In this case,

Theorem 5.9 tells us that the number of matchings of size t in a d-regular graph G on
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n vertices can be determined as a linear combination of subgraph counts for graphs on

≤ t edges with minimum degree 2. For example, when t ≤ 4 the only such subgraphs

are the cycles C3 and C4, and it is not too taxing to calculate their coefficients.

5.2.1 Small matchings in graphs of large girth

We have just seen that Theorem 5.9 gives an easy way to calculate the number of

matchings of size ≤ 4 in bipartite graphs, but more generally it also provides an easy

way to calculate the number of matchings in graphs of large girth.

Definition 5.10. The girth γ(G) of a graph G is the length of the shortest cycle in

G. If G is acyclic, we say γ(G) =∞.

If γ(G) = γ then any subgraph of G also has girth at least γ. In particular, a

subgraph on fewer than γ edges cannot contain any cycle at all, so for any F with

e(F ) < γ the sum in Theorem 5.9 contains only the term corresponding to the empty

graph and hence the number of subgraphs of G isomorphic to F is independent of G

(except for the dependence on n and r). Indeed, this is still true as long as F has

small diameter.

Definition 5.11. The diameter of a connected graph G is the maximum length of a

shortest path between two vertices of G. If G is disconnected, the diameter of G is

the sum of the diameters of its components.

The diameter of a homomomorphic image of F is at most the diameter of F itself,

so if F has diameter strictly less than γ(G) the number of subgraphs of G isomorphic

to F is again independent of G. Taking this one step further, the only subgraphs

of G on < 3γ/2 edges with no vertices of degree 1 are cycles Ck for γ ≤ k ≤ 3γ/2.

(Note that with 3γ/2 edges there are additional such subgraphs, such as the “theta”

graph consisting of three paths of length γ/2 with the same endpoints.) Thus if F

has diameter < 3γ/2 the number of subgraphs of G isomorphic to F depends only on

the number of cycles of each length in that range. As applied to matchings,
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Corollary 5.12. Let G be a d-regular graph on n vertices with girth γ(G) > 2t/3.

There are coefficients ak(t, n, d) so that for any such graph

φt(G) =
∑
k≤t

ak(t, n, d) sub(Ck, G).

5.2.2 Computing the coefficients

If we take F = tK2 to be a matching of size t, we can actually calculate some of these

coefficients by hand for graphs H on exactly t edges. We focus on the case where F

and H have the same number of edges, so that cH = ĉH . Finding the coefficients cH

in Theorem 5.9 is much harder, but can be done recursively for any desired H and F

([70] gives a similar technique).

Proposition 5.13. For any graph F on t edges and any H on t edges with all degrees

2 or 3,

cH(F, n, d) =
cov(F,H)

emb(F, F )
(−1)n2(H)(−2)n3(H),

where cov(F,H) is the number of homomorphisms from F to H with image isomorphic

to H and ni(H) is the number of vertices in H with degree i.

Proof. If we keep track of the coefficients in the proof of Lemma 5.8, we get

sub(F,G) =
∑
P

(
µPd

n(F/P )−n(F/P ∗)(n
d
)cc(F/P )−cc(F/P ∗)

)aut((F/P ∗)/P ′)

aut(F )
sub((F/P ∗)/P ′, G),

where aut(G) := emb(G,G) is the number of automorphisms of G.

To determine the coefficient ĉH , we need to know what partitions P and P ′ yield H

from F . Since F and H have the same number of edges, none of the three operations

(contracting according to P , taking the 2-core, and contracting according to P ′) may

remove any edges. In particular, we must have F/P ∗ = F/P , so the n and d terms

have exponent 0 and H = (F/P )/P ′. That is, H = F/P ′′ for some partition P ′′ of

V (F ), and P may be any refinement of P ′′ in which all blocks have size at least 2
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(since the block sizes are the degrees in F/P ). If H has maximum degree 3 then P ′′

has maximum block size 3, and so we must in fact have P = P ′′.

Now note that there are cov(F,H)/ emb(H,H) partitions P with F/P isomorphic

to H: to get a cover of H by F , first determine a partition P in the set above, then

map the parts to vertices of H in any of emb(H,H) ways. Therefore,

cH(F, n, d) =
emb(H,H)

emb(F, F )

∑
P : F/P∼=H

µP

=
emb(H,H)

emb(F, F )
(−1)n(H) cov(F,H)

emb(H,H)

∏
v∈V (H)

(dH(v)− 1)!

=
cov(F,H)

emb(F, F )
(−1)n2(H)(−2)n3(H).

Indeed, if F = tK2 we can further calculate cov(F,H) = emb(F, F ) = 2tk!, so for

example if H is a union of cycles with total length t then cH(F, n, d) = (−1)t.

It is now easy to reproduce the result of [31] that Conjecture 5.4 holds for t ≤ 4.

In particular, if one restricts to bipartite graphs then for t ≤ 3 the expression in

Theorem 5.9 has only the term for the empty graph and the number of matchings is

independent of the graph. When t = 4 it also has a term for the number of 4-cycles

in G, with coefficient 1, so one just needs to see that among d-regular graphs on 2kn

vertices kKd,d has the most 4-cycles. But this is clear, since every edge in Kd,d is in

(d − 1)2 4-cycles, which is the most possible in a d-regular graph. The graph C4 is

also the only nonempty subgraph which appears in the sum for matchings of size 5.

Wanless [70] calculates that the coefficient of C4 in matchings of size 5 is nd+n− 8d,

which is positive whenever n ≥ 10 (as necessary to have any matching of size 5),

so again to maximize the number of matchings of size 5 it suffices to maximize the

number of 4-cycles and this is still achieved by a union of Kd,ds.

We can also see that Conjecture 5.4 holds even among non-bipartite graphs for

t = 3, since the coefficient of the 3-cycle is negative and so non-bipartiteness can only
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hurt the number of matchings. Wanless also gives the coefficient of C3 in matchings

of size 4 as −(nd+ n− 6d), which is negative when n ≥ 8 (as necessary to have any

matching of size 4). In other words, to show that the nonbipartite upper matching

conjecture holds for t = 4 one just has to show that among d-regular graphs on 2kd

vertices kKd,d maximizes sub(C4, G)−(nd+n−6d) sub(C3G). But this is again clear,

since kKd,d has the most 4-cycles possible and the fewest 3-cycles.

Unfortunately, these calculations become more cumbersome for larger sizes of

matchings. Still, this seems to lend some extra evidence in favor of extending Con-

jecture 5.4 to nonbipartite graphs.
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CHAPTER VI

INDEPENDENT SETS AND HOMOMORPISMS

6.1 Extremal problems for independent sets and homomor-
phisms

The results outlined in the previous chapter suggest a range of similar extremal prob-

lems for configurations other than matchings. For example, one could ask which

d-regular graphs have the most independent sets.

Definition 6.1. An independent set in a graph G is a set of pairwise nonadjacent

vertices. Write ik(G) for the number of size-k independent sets in G and i(G) =∑
k ik(G) for the total number of independent sets (including the empty independent

set).

Kahn showed that the problem for d-regular, bipartite graphs behaves similarly

to the case for matchings.

Theorem 6.2. For any d-regular, bipartite graph on n vertices

i(G) ≤ i(Kd,d)
n/2d.

Equality holds in Theorem 6.2 if G = n
2d
Kd,d is a union of n/2d disjoint copies of

Kd,d. In other words, unions of Kd,ds maximize the total number of independent sets

over all d-regular, bipartite graphs on a fixed number of vertices.

More generally, we can consider any labeling of the vertices of G, subject to

constraints on the labels. Recall Definition 5.5, repeated here for clarity:

Definition 6.3. Let G and H be graphs. A function χ : V (G)→ V (H) is a graph ho-

momorphism if {χ(u), χ(v)} ∈ E(H) for every {u, v} ∈ E(G). Write Hom(G,H) for

the set of graph homomorphisms fromG toH and denote hom(G,H) := |Hom(G,H)|.
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Figure 13: Homomorphism target graphs yielding (a) independent sets, (b) 3-
colorings, and (c) Widom-Rowlinson configurations.

That is, in a homomorphism edges of G must map to edges of H (but there is

no requirement on non-edges of G). While most of our graphs in this work will be

simple graphs, it is important to consider loops in H.

We saw in Chapter 5 that if we think of G as a small, fixed graph then hom(G,H)

is closely linked to the number of G-subgraphs of H (e.g., counting triangles in H).

However, in this chapter we will usually think of H as being a small fixed graph, in

which case hom(G,H) counts H-colorings of G: labelings of the vertices of G subject

to constraints described by H. For instance, if H is the graph Hind consisting of a

single edge {0, 1} with a loop at 0, then homomorphisms from G to H correspond

to independent sets of G as the preimages of 1. Similarly, homomorphisms from G

to the complete (loopless) graph Kt correspond to t-colorings of G. Another target

graph which will be of interest is HWR, a path of length three with loops at each ver-

tex. Homomorphisms to HWR are called Widom-Rowlinson configurations and model

interactions between two types of particles which repel each other. See Figure 13.

For every such model, there is an associated extremal problem asking which d-

regular, n-vertex graph G maximizes hom(G,H). If we wish to compare graphs on

different numbers of vertices, it is natural to ask which graph maximizes the scaled

quantity hom(G,H)1/n.

In a broad generalization of Kahn’s result, Galvin & Tetali [35] showed that the

analog of Theorem 6.2 holds for d-regular, bipartite G and all target graphs H (includ-

ing, for example, HWR). And using a cloning construction and a limiting argument,
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they showed that in fact the partition function of such models (a weighted count of

homomorphisms) is maximized by Kd,d.

Theorem 6.4 ([35]). For any d-regular, bipartite graph G on n vertices and any

graph H with nonnegative vertex weights ~λ ∈ RV (H)
+ ,

hom~λ(G,H)1/n ≤ hom~λ(Kd,d, H)1/2d,

where

hom~λ(G,H) :=
∑

χ∈Hom(G,H)

∏
v∈V (G)

λχ(v)

is the total weight (or partition function) of ~λ-weighted homomorphisms from G to

H.

Note that the case ~λ ≡ 1 is the counting result.

There is no such sweeping statement for the class of all d-regular graphs with the

bipartiteness restriction removed. In [72] and [73], Zhao showed that the bipartiteness

restriction on G in Theorem 6.2 and Theorem 6.4 can be removed for some class of

graphs H, including Hind. But such an extension is not possible for all graphs H: for

example, Kd+1 has more homomorphisms to HWR than does Kd,d (after normalizing

for the different numbers of vertices). In fact Galvin conjectured the following:

Conjecture 6.5 ([33, 34]). For any d-regular graph G on n vertices

hom(G,HWR)1/n ≤ hom(Kd+1, HWR)1/(d+1).

The more general Conjecture 1.1 of [33] that the maximizing G for any H is either

Kd,d or Kd+1 has been disproved by Sernau [64]. However, as we will show in the next

section, Conjecture 6.5 is correct.
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Figure 14: A configuration for the Widom-Rowlinson model on a grid. Vertices
mapping to 1 and 2 are shown as squares and diamonds, respectively (corresponding
to Figure 13).

6.2 The Widom-Rowlinson model

Homomorphisms G → HWR, called Widom-Rowlinson assignments (or configura-

tions) can be interpreted as modeling configurations of two types of repelling parti-

cles on the vertices of G, with the constraint that particles of different types should

not occupy adjacent vertices. We think of vertices assigned 1 and 2 as “colored” (or

“occupied”) and those assigned 0 as “uncolored” (see Figure 14). The (symmetric)

Widom-Rowlinson model on G is the probability distribution over Ω = Hom(G,HWR)

suggested by the λ-weighting above:

Pr[χ] =
λX1(χ)+X2(χ)

PG(λ)
,

where Xi(χ) are the number of vertices colored i under χ, and

PG(λ) =
∑
χ∈Ω

λX1(χ)+X2(χ)

is the partition function for the weighting which assigns weight λ to occupied vertices

and weight 1 to unoccupied vertices.

The above theorems of Kahn and Galvin and Tetali are based on the entropy

method (see [62] and [34] for a survey, or Section 7.2 for an application), but in this

context bipartiteness seems essential for the effectiveness of that method. We will

approach the problem differently, using the occupancy method of [23].

Definition 6.6. Define the occupancy fraction αG(λ) to be the expected fraction of

vertices which receive a (nonzero) color in the Widom-Rowlinson model:

αG(λ) :=
E[X1 +X2]

n
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where Xi is the number of vertices colored i by the random assignment χ.

A calculation shows that αG(λ) is in fact the scaled logarithmic derivative of the

partition function:

αG(λ) =
λ

n
· P
′
G(λ)

PG(λ)
=
λ · (logPG(λ))′

n
. (5)

Our main result is that for any λ, αG(λ) is maximized over all d-regular graphs G

by Kd+1.

Theorem 6.7. Let G be any d-regular graph and λ > 0. Then

αG(λ) ≤ αKd+1
(λ)

with equality if and only if G is a union of copies of Kd+1.

We will prove this by introducing local constraints on random configurations in-

duced by the Widom-Rowlinson model on a d-regular graph G, then solving a linear

programming relaxation of the optimization problem over all d-regular graphs.

Theorem 6.7 implies maximality of the normalized partition function:

Corollary 6.8. Let G be a d-regular graph on n vertices and λ > 0. Then

1

n
logPG(λ) ≤ 1

d+ 1
logPKd+1

(λ),

or equivalently,

PG(λ) ≤ PKd+1
(λ)n/(d+1),

with equality if and only if G is a union of Kd+1’s.

The quantity 1
n

logPG(λ) is known in statistical physics as the free energy per unit

volume.
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Proof of Corollary 6.8. Since 1
n

logPG(0) = 0 for every G,

1

n
logPG(λ) =

1

n

∫ λ

0

(logPG(t))′ dt

≤ 1

d+ 1

∫ λ

0

(
logPKd+1

(t)
)′
dt =

1

d+ 1
logPKd+1

(λ)

where the inequality follows from Theorem 6.7 and (5). Exponentiating both sides

gives Corollary 6.8, and taking λ = 1 in Corollary 6.8 gives the counting result to

prove Conjecture 6.5.

The method we use in this section is more probabilistic than the entropy method

in the sense that Theorem 6.7 gives information about an observable of the model;

in some statistical physics models, the analog of αG(λ) would be called the mean

magnetization. We also work directly in the statistical physics model, instead of

counting homomorphisms.

Davies et al. [23] applied the occupancy method to two central models in statistical

physics: the hard-core model of a random independent set described above, and the

monomer-dimer model of a randomly chosen matching from a graph G. In both cases

they showed that Kd,d maximizes the occupancy fraction over all d-regular graphs. In

the case of independent sets this gives a strengthening of the results of Kahn, Galvin

and Tetali, and Zhao, while for matchings, it was not known previously that unions

of Kd,d maximizes the partition function or the total number of matchings. Another

application of the occupancy method can be found in Section 7.3, where it is applied

to counting independent sets in hypergraphs.

The idea of calculating the log partition function by integrating a partial derivative

is not new of course; see for example, the interpolation scheme of Dembo, Montanari,

and Sun [24] in the context of Gibbs distributions on locally tree-like graphs. The

method is powerful because it reduces the computation of a very global quantity,

PG(λ), to that of a locally estimable quantity, αG(λ).
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Figure 15: An example configuration with boundary conditions based on a coloring
χ. The graph H consists of the four neighbors of v along with the black edges, and
the list Lu is shown above each vertex u of H. The colors assigned by χ to v and its
neighbors are immaterial and so are not shown.

Some partial results towards the Widom-Rowlinson counting problem were ob-

tained by Galvin [33], who showed that a graph with more homomorphisms than a

union of Kd+1’s must be close in a specific sense to a union of Kd+1’s.

6.2.1 Proof of Theorem 6.7

To prove Theorem 6.7, we will use the following experiment: for a d-regular graph G,

we first draw a random χ from the Widom-Rowlinson model, then select a vertex v

uniformly at random from V (G). We then write our objective function, the occupancy

fraction, in terms of local probabilities with respect to this experiment, and add

constraints on the local probabilities that must hold for all G. We then relax the

optimization problem to all distributions satisfying the local constraints, and optimize

using linear programming.

Fix d and λ. Define a configuration with boundary conditions C = (H,L) to be a

graph H on d vertices with family of lists L = {Lu}u∈H , where each Lu ⊆ {1, 2} is a

set of allowed colors for the vertex u. Here H represents the neighborhood structure

of a vertex v ∈ V (G) and the color lists Lu represent the colors permitted to neighbors

of v, given an assignment χ on the vertices outside of N(v) ∪ {v}. (See Figure 15.)

Denote by C the set of all possible configurations with boundary conditions in any

d-regular graph.

We now pick the assignment χ at random from the Widom-Rowlinson model on a
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fixed d-regular graph G, pick a vertex v uniformly at random from V (G), and consider

the probability distribution induced on C.

For example, if G = Kd+1 then with probability 1 the random configuration C is

H = Kd with Lu = {1, 2} for all u ∈ V (H). If G = Kd,d then H is always d isolated

vertices and the color lists can be any (possibly empty) subset of {1, 2}, but the lists

must be the same for all u ∈ V (H).

For a configuration C = (H,L), define

αvi (C) = Pr[χ(v) = i | C]

αui (C) =
1

d

∑
u∈V (H)

Pr[χ(u) = i | C],

where the probability is over the Widom-Rowlinson model on G given the boundary

conditions L. Note that the spatial Markov property of the model means that these

probabilities are “local” in the sense that they can be computed knowing only C,

without any dependence on the remainder of the graph. Let αv(C) = αv1(C) +αv2(C)

and αu(C) = αu1(C) + αu2(C). Then we have

αG(λ) =
1

n

∑
v∈V (G)

Pr[χ(v) ∈ {1, 2}] = E
C

[αv(C)] (6)

=
1

nd

∑
v∈V (G)

∑
u∼v

Pr[χ(u) ∈ {1, 2}] = E
C

[αu(C)],

where the expectations are over the probability distribution induced on C by our

experiment of drawing χ from the model and v uniformly at random from V (G),

and the last sum is over all neighbors of v in G. Equality of the two expressions for

α follows since sampling a uniform neighbor of a uniform vertex in a regular graph

is equivalent to sampling a uniform vertex. We will show that this expectation is

maximized when the graph G is Kd+1.

We can in fact write explicit formulae for αv(C) and αu(C). For a configuration

C = (H,L), let P
(0)
C (λ) be the total weight of colorings of H satisfying the bound-

ary conditions given by the lists L (corresponding to the partition function for the
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neighborhood of v conditioned on χ(v) = 0). Also, write P
(i)
C (λ) for the total weight

of colorings of H satisfying the boundary conditions and using only color i and 0

(corresponding to the partition functions for the neighborhood of v conditioned on

χ(v) = i). Finally, let P
(12)
C (λ) = P

(1)
C (λ) + P

(2)
C (λ) and let

PC(λ) = P
(0)
C (λ) + λP

(12)
C (λ)

be the partition function of N(v)∪{v} conditioned on the boundary conditions given

by C. Note that if L has a1 lists containing 1 and a2 lists containing 2, then P
(i)
C (λ) =

(1 + λ)ai .

Now we can write

αv(C) =
λP

(12)
C

PC
and αu(C) =

λ
(

(P
(0)
C )′ + λ(P

(12)
C )′

)
dPC

, (7)

where P ′ is the derivative of P in λ. We will suppress the dependence of the partition

functions on λ from now on.

For G = Kd+1, we have

PKd+1
= 2(1 + λ)d+1 − 1

αKd+1
(λ) =

2λ(1 + λ)d

2(1 + λ)d+1 − 1
.

If G = Kd+1 then the only possible configuration is CKd+1
, the complete neighborhood

Kd with full boundary lists, so we also have αu(Kd) = αv(Kd) = αKd+1
(λ) (we can

also compute these directly). Since this quantity will arise frequently, we will use the

notation αK := αKd+1
(λ).

Let q : C → [0, 1] denote a probability distribution over the set of all possible

configurations. We consider the following optimization problem over the variables
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q(C), C ∈ C.

α∗ = max
∑
C∈C

q(C)αv(C) subject to (8)

∑
C∈C

q(C) = 1

∑
C∈C

q(C)[αv(C)− αu(C)] = 0

q(C) ≥ 0 ∀C ∈ C.

This linear program is a relaxation of our optimization problem of maximizing

αG(λ) over all d-regular graphs: any such graph induces a probability distribution on

C, and as we have seen above in (6), the constraint asserting the equality E[αv(C)] =

E[αu(C)] must hold in all d-regular graphs.

We will show that for any λ > 0 the unique optimal solution of this linear program

is q(CKd+1
) = 1, where CKd+1

is the configuration induced by Kd+1 (i.e., H = Kd and

Lu = {1, 2} for all u ∈ H).

The dual of the above linear program is

α∗ = min Λp subject to

Λp + Λc(α
v(C)− αu(C)) ≥ αv(C) ∀C ∈ C,

with decision variables Λp and Λc.

To show that the optimum is attained by CKd+1
, we must find a feasible solution to

the dual program with Λp = αK = 2λ(1+λ)d

2(1+λ)d+1−1
. Note that with Λp = αK the constraint

for CKd+1
holds with equality for any choice of Λc. In other words, it suffices to find

some convex combination of the two local estimates αu and αv which is maximized

by CKd+1
over all C ∈ C.

Let C0 be a configuration with Lu = ∅ for all u ∈ H (in which case the edges of H

are immaterial, and so abusing notation we will refer to any one of these configurations

as C0). We find a candidate Λc by solving the constraint corresponding to C0 with
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equality:

αK = Λc(α
u(C0)− αv(C0)) + αv(C0)

= (1− Λc)
2λ

1 + 2λ
.

This gives

Λc = 1− αK
2λ

(1 + 2λ) =
αK
2λ

(1 + λ)d − 1

(1 + λ)d
.

With this choice of Λc, the general dual constraint is

αK ≥
αK
2λ

(1 + λ)d − 1

(1 + λ)d
αu(C) +

αK
2λ

(1 + 2λ)αv(C).

Plugging in the formulae for αu and αv from (7), this becomes

(P
(0)
C )′ + λ(P

(12)
C )′

2P
(0)
C − P

(12)
C

≤ d(1 + λ)d

(1 + λ)d − 1
. (9)

From this point on we may assume that C has some non-empty color list, since

otherwise the configuration is equivalent to C0 and the constraint holds with equality

by our choice of Λc. This assumption tells us, among other things, that (P
(0)
C )′ > 0

and 2P
(0)
C − P

(12)
C > 0.

Our goal is now to show that (9) holds for all C. We consider the two terms

separately.

Claim 6.9. For any C 6= C0,

λ(P
(12)
C )′

2P
(0)
C − P

(12)
C

≤ dλ(1 + λ)d−1

(1 + λ)d − 1

with equality if and only if the lists Lu are all equal and C has no dichromatic color-

ings.

Proof. Since the partition function P
(0)
C is at least the total weight P

(1)
C + P

(2)
C − 1

of monochromatic colorings (with equality when C has no dichromatic colorings), we

have

(P
(12)
C )′

2P
(0)
C − P

(12)
C

≤ (P
(12)
C )′

P
(12)
C − 2

=
a1(1 + λ)a1−1 + a2(1 + λ)a2−1

(1 + λ)a1 + (1 + λ)a2 − 2
(10)
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(where, as above, ai is the number of vertices in H allowed color i under the given

boundary conditions), and so we need to show that

a1(1 + λ)a1−1 + a2(1 + λ)a2−1

(1 + λ)a1 + (1 + λ)a2 − 2
≤ d(1 + λ)d−1

(1 + λ)d − 1
.

In general, to show that (a + b)/(c + d) ≤ t it suffices to show that a/c ≤ t and

b/d ≤ t. Thus it is enough to show that

a(1 + λ)a−1

(1 + λ)a − 1
≤ d(1 + λ)d−1

(1 + λ)d − 1
(11)

whenever 1 ≤ a ≤ d. (Note that if either a1 = 0 or a2 = 0 then (10) reduces to (11),

and if both a1, a2 = 0 then the configuration is C0). Indeed, it is not hard to check

via calculus that the left hand side of (11) is increasing with a. This completes the

proof of the inequality in Claim 6.9.

We have equality in this final step when a1 = a2 = d or when one is 0 and the

other is d. So we have equality overall whenever the lists are all equal and there are

no dichromatic colorings (recall that we are assuming C has some non-empty coloring

list).

Claim 6.10. For any C 6= C0,

(P
(0)
C )′

2P
(0)
C − P

(12)
C

≤ d(1 + λ)d−1

(1 + λ)d − 1
,

with equality if and only if the lists Lu are all equal and C has no dichromatic color-

ings.

Proof. We can write

λ(P
(0)
C )′

2P
(0)
C − P

(12)
C

=
λ(P

(0)
C )′

P
(0)
C

· P
(0)
C

(P
(0)
C − P

(1)
C ) + (P

(0)
C − P

(2)
C )

=
EC [X1] + EC [X2]

PrC [X1 > 0] + PrC [X2 > 0]
,

where now Xi is the number of vertices colored i in a random coloring chosen from the

Widom-Rowlinson model on C. Noting that EC [X1] = 0 whenever PrC [X1 > 0] = 0,
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it suffices as above to show that whenever color 1 is permitted anywhere in C,

EC [X1]

PrC [X1 > 0]
= E

C
[X1 | X1 > 0] ≤ λd(1 + λ)d−1

(1 + λ)d − 1
= E

Kd

[X1 | X1 > 0], (12)

and similarly for X2, but this will follow by symmetry.

We can decompose the expectation as

E
C

[X1 | X1 > 0] =
∑

S⊆V (H)

Pr
C

[χ−1(2) = S | X1 > 0] · E
C

[X1 | X1 > 0, χ−1(2) = S].

The partition function restricted to colorings satisfying X1 > 0 and χ−1(2) = S is

just PS(λ) = λ|S|((1+λ)aS−1), where aS is the number of vertices in H \S which are

allowed color 1 and are not adjacent to any vertex of S. The conditional expectation

is then

E
C

[X1 | X1 > 0, χ−1(2) = S] =
aSλ(1 + λ)aS−1

(1 + λ)aS − 1
≤ dλ(1 + λ)d−1

(1 + λ)d − 1

with equality precisely when S is empty and 1 is available for every vertex. That is,

E
C

[X1 | X1 > 0] ≤
∑

S⊆V (H)

Pr
C

[χ−1(2) = S | X1 > 0] · dλ(1 + λ)d−1

(1 + λ)d − 1
=
λd(1 + λ)d−1

(1 + λ)d − 1
,

as desired. We have equality in (12) when PrC [aS = d | X1 > 0] = 1, which holds for

the configurations where 1 is available to every vertex but which have no dichromatic

colorings. That is, for equality to hold in the claim C must have no dichromatic

colorings, and any color which is available to some vertex u must be available to

every vertex (so the lists must be identical).

Adding the inequalities in Claims 6.9 and 6.10 shows that (9) holds for all C,

proving optimality of Kd+1.

6.2.2 Uniqueness

Lemma 6.11. The distribution induced by Kd+1 is the unique optimum of the LP

relaxation (8).

67



Proof. Complementary slackness for our dual solution says that any optimal primal

solution is supported only on configurations C with identical boundary lists and no

dichromatic colorings. These fall into three categories:

Case 0 Lu = ∅ for all u. In this case the edges of H are immaterial, as none of H

can be colored. This is the configuration C0 above.

Case 1 Lu = {i} for all u (for i = 1 or 2). The edges of H are again immaterial, as

every coloring of H with only color i is allowed. Call this configuration C1.

Case 2 Lu = {1, 2} for all u. In this case the prohibition on dichromatic colorings

requires that C = CKd+1
.

We can calculate αv(C) and αu(C) for each case. For Case 0 we have

αv(C0) =
2λ

1 + 2λ
and αu(C0) = 0.

For Case 1 we have

αv(C1) =
λ+ λ(1 + λ)d

λ+ (1 + λ)d+1
and αu(C1) =

λ(1 + λ)d

λ+ (1 + λ)d+1
.

And of course, for Case 2 we have

αv(Kd) = αu(Kd) = αK .

In both Case 0 and Case 1 we have αu < αv, so the only convex combination q of the

three cases giving
∑

C q(C)αu(C) =
∑

C q(C)αv(C) (as is required for feasibility) is

the one which puts all of the weight on CKd+1
.

6.2.3 The asymmetric model

It is also natural to consider a weighted version of the Widom-Rowlinson model with

distinct activities λ1, λ2 for the two colors, so that the configuration χ is chosen with

probability proportional to λX1
1 λX2

2 , and where the partition function PG(λ1, λ2) is

again the normalizing factor. We can ask which graphs maximize P (λ1, λ2)1/n. We

conjecture
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Conjecture 6.12. For any λ1, λ2 > 0, the weighted occupancy fraction

αG(λ1, λ2) :=
λ2α

1
G(λ1, λ2) + λ1α

2
G(λ1, λ2)

λ1 + λ2

is maximized over all d-regular graphs by Kd+1.

In fact, Conjecture 6.12 implies the following conjecture on the maximality of the

partition function:

Conjecture 6.13. For any nonnegative weights ~λ ∈ R{0,1,2}+ , and any d-regular graph

G on n vertices,

hom~λ(G,HWR) ≤ hom~λ(Kd+1, HWR)n/(d+1).

To see this, assume without loss of generality that λ0 = 1 and λ1 ≥ λ2, and let

FG(x) = 1
n

logPG(λ1 − λ2 + x, x). We have

1

n
logPG(λ1, λ2) = FG(λ2) = FG(0) +

∫ λ2

0

dFG
dx

(x) dx

FG(0) = 1
n

logPG(λ1 − λ2, 0) = log(1 + λ1 − λ2) for all graphs G, and so if we can

show that for all 0 ≤ x ≤ λ2, dFG

dx
(x) is maximized when G = Kd+1, then we obtain

(the log of) Conjecture 6.13. We compute:

dFG
dx

(x) =
1

n

d
dx
PG(λ1 − λ2 + x, x)

PG(λ1 − λ2 + x, x)

=
1

n

∑
χ
xX1+(λ1−λ2+x)X2

x(λ1−λ2+x)
(λ1 − λ2 + x)X1 · xX2

PG(λ1 − λ2 + x, x)

=
1

x(λ1 − λ2 + x)

1

n

∑
χ(xX1 + (λ1 − λ2 + x)X2)(λ1 − λ2 + x)X1 · xX2

PG(λ1 − λ2 + x, x)

=
1

x(λ1 − λ2 + x)

[
xα

(1)
G (λ1 − λ2 + x, x) + (λ1 − λ2 + x)α

(2)
G (λ1 − λ2 + x, x)

]
.

Conjecture 6.12 implies that this is maximized by Kd+1.

6.3 Other nonbipartite extremal graphs

Shortly after the work of the previous section, another method was found to prove

Conjecture 6.5 (and more generally the weighted version Conjecture 6.13). The new
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approach uses a bijective argument similar to the one applied by Zhao [72] to extend

Theorem 6.2 to nonbipartite graphs, but with a very different outcome. Like Zhao’s

argument, this method actually gives a class of target graphs H for which unions of

Kd+1 maximize the number of homomorphisms. The method is very similar to the

approach of Sernau [64] (which after correcting a small error was later discovered to

yield the same result).
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CHAPTER VII

MATCHINGS AND INDEPENDENT SETS IN

HYPERGRAPHS

7.1 Unified setting for hypergraphs

A hypergraph G = (V,E) is a set V of vertices along with a collection E of subsets

of V called hyperedges. The hypergraph is called r-uniform if every edge contains

exactly r vertices, and d-regular if every vertex is in exactly d edges. Furthermore,

a hypergraph is linear (or simple) if no two edges intersect in more than one vertex.

For instance, a 2-uniform hypergraph is just a graph, and it is simple if and only if

the graph has no multiple edges.

There are several ways to extend the usual definition of an independent set in a

graph to the hypergraph setting. We will use the following.

Definition 7.1. An independent set in a hypergraph G is a set I ⊆ V of vertices

such that |I ∩ e| ≤ 1 for every hyperedge e ∈ E, i.e., no two vertices in I are in a

common hyperedge of G.

A different definition of a hypergraph independent set might only require that I

should not contain any edge in its entirety, or perhaps more generally (for r-regular

hypergraphs) that |I ∩ e| ≤ t for some fixed 1 ≤ t < r. We choose to use the

strong requirement above in part because of its close relationship to matchings: if one

considers the hypergraph GT = (E, V ′) obtained by exchanging the roles of vertices

and hyperedges in G (where V ′ = {{e|v ∈ e}}v∈V , so that the edge-vertex incidence

matrix of GT is the transpose of that of G) then an independent set in G corresponds

precisely to a matching (set of pairwise disjoint hyperedges) in GT. Furthermore, if

G is a d-regular, r-uniform, linear hypergraph, then GT is an r-regular, d-uniform,
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linear hypergraph. That is, a tight bound on the maximum number of independent

sets in a uniform, regular hypergraph is equivalent to a similar bound for matchings

(and vice versa).

The best prior bound on independent sets in a uniform, regular hypergraph is due

to Ordentlich & Roth.

Theorem 7.2 ([60]). If G is an r-uniform, d-regular, linear hypergraph on n vertices

then

lg i(G)

n
≤ 1

r
+O

(
log2(rd)

rd

)
.

This is not tight for r = 2, where the correct bound for independent sets (due to

[45]) is

lg i(G)

n
≤ lg i(Kd,d)

2d
=

lg(2d+1 − 1)

2d
=

1

2
+ Θ

(
1

d

)
.

Nor is it tight for d = 2, where the correspondence to matchings in an r-regular graph

yields

lg i(G)

n
=

lg µ(GT)

n
≤ lg µ(Kr,r)

r2
= Θ

(
log r

r

)
due to Davies et al.

Ordentlich & Roth were interested in bounding the number of independent sets

in the Hamming hypergraph H[r]d on vertex set [r]d with hyperedges consisting of sets

of vertices differing only in a single coordinate (Hamming distance 1). Indeed, the

Hamming hypergraph is the maximizer in the case of d = 2, since H[r]2 = KT
d,d.

We give the following conjecture unifying the known bounds for independent sets

and matchings in graphs.

Conjecture 7.3. If G is a d-regular, r-uniform linear hypergraph on n vertices, then

lg i(G)

n
≤ 1

r
+O

(
log r

rd

)
.

For d, r > 2 there is no obvious contender for the extremal hypergraph. There

are several natural ways to extend the notion of complete bipartite graph to the
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hypergraph setting, but among the hypergraphs we have considered the maximizer of

1
n

logPG(λ) depends on the choice of λ. If it turns out to be the case that the overall

maximizer does in fact depend on λ then it may indeed be very hard to pin down a

general description of the maximizing hypergraph.

In this chapter we will give two approaches for improving this bound for indepen-

dent sets in hypergraphs. The first, which improves upon the bound in Theorem 7.2

in the regime where r is small, is derived using the entropy technique pioneered by

Radhakrishnan [61] in his elegant proof of the Bregman-Minc theorem, and (like

the Bregman-Minc theorem itself) requires that the hypergraph satisfy a partiteness

constraint. The second approach uses the occupancy fraction method pioneered by

Davies et al. to work towards a bound which would indeed unify the known results

for independent sets (r = 2) and matchings (d = 2), with a complete proof for the

specific case of triangle-free 3-uniform hypergraphs. While these new results require

slightly stronger hypotheses than Theorem 7.2, they both still apply to the motivating

case of independent sets in the Hamming cube H[r]d .

7.2 Entropy bound

As in the other entropy-based bounds for independent sets and matchings, our result

will require a bipartiteness condition. As with independent sets, there are several

ways to extend the definition of graph bipartiteness to the hypergraph setting. The

definition which seems the most useful in this context is the following, first given by

Aharoni & Kessler [1].

Definition 7.4. A hypergraph G = (V,E) is bipartite if there is a distinguished set

A ⊆ V of vertices such that |A ∩ e| = 1 for every hyperedge e ∈ E.

Now we can state the main result of this section.

Theorem 7.5. Let G be an r-uniform, d-regular, bipartite, linear hypergraph on n
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vertices. Then

lg i(G)

n
≤ 1

rd
lg(rd + 2d − 1) = O

(
log r

r

)
.

In the regime where d is constant, the second term dominates in Theorem 7.2

and this result is tighter. On the other hand, if d is relatively large (e.g., d > lg2 r)

Theorem 7.2 is tighter. In fact, the known extremal result for matchings shows that

this bound gives the best possible order of growth (at the log level) for constant

d. In particular, while this theorem requires a bipartiteness hypothesis which Theo-

rem 7.2 does not, it still applies to their original motivating example of the Hamming

hypergraph, giving a new, tighter bound in that case when d is constant and r is

large.

7.2.1 Entropy preliminaries

In order to prove Theorem 7.5, we will need a few key definitions and lemmas. This

treatment is largely copied from [45] (see [54] for a fuller discussion).

Definition 7.6. The (binary) entropy of a discrete random variable X is

H(X) := E(lg
1

p(X)
) =

∑
x

p(x) lg
1

p(x)
,

where we write p(x) := Pr(X = x). (We extend this notation in natural ways below.)

The conditional entropy H(X|Q) of X given an event Q is just the entropy of the

random variable X conditioned on Q. More generally, the conditional entropy of X

given another random variable Y is

H(X | Y ) := EH(X|{Y = y}) =
∑
y

p(y)
∑
x

p(x|y) lg
1

p(x|y)
.

Roughly speaking, the binary entropy is the number of bits of information neces-

sary to determine a random variable.

For a random vector X = (X1, . . . , Xk) we have

H(X) = H(X1) +H(X2 | X1) + · · ·+H(Xk | X1, . . . , Xk−1). (13)
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We will make use of the classical inequalities

H(X) ≤ lg|supp(X)|

(with equality if X is uniform over its support) and

H(X | Y ) ≤ H(X). (14)

In general if Y determines Z then H(X|Y ) ≤ H(X|Z). For the random vector above,

H(X) ≤
∑

iH(Xi), and more generally

H(X|Y ) ≤
∑
i

H(Xi | Y ). (15)

Together, (13) and (14) imply

H(X) ≤ H(Y ) +H(X | Y )

Finally, we will take advantage of a less classical inequality due to Shearer [20]

which generalizes (15). For a random variable X = (X1, . . . , Xk) and A ⊆ [k], let XA

denote (Xi)i∈A.

Lemma 7.7 ([20]). Let X = (X1, . . . , Xn) be a random vector and let A be an m-

cover of [n], i.e., a collection of subsets (possibly with repeats) of [n] such that each

member of [n] is contained in at least m members of A. Then

H(X) ≤ 1

m

∑
A∈A

H(XA).

7.2.2 Proof of Theorem 7.5

Our proof of Theorem 7.5 is very much along the lines of Kahn’s proof in the graph

case. The idea is to bound the number of independent sets by bounding the entropy

of a uniform random independent set. The random independent set, thought of as

an indicator vector, can be decomposed into smaller vectors using Lemma 7.7, whose

entropy can be bounded individually.
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Proof of Theorem 7.5. For a pair of vertices u 6= v ∈ V of a hypergraph G, say u ∼ v

if there is some hyperedge e ∈ E with u, v ∈ e, and let N(v) = {u | u ∼ v} denote the

neighborhood of v. For a subset S ⊆ V let G[S] denote the induced subhypergraph

of G on the vertices of S, i.e., with hyperedges {e ∩ S}e∈E .

Let X be the indicator vector for a uniform random independent set I of G, and

let A ⊆ V be the distinguished set guaranteed by biparteness of G. Note that since

G is regular and exactly one of the r vertices in each edge is in A we must have

|A| = n/r. For v ∈ V let Cv be the event that v is covered by I, i.e., I ∩ N(v) 6= ∅

(so that I ∪ {v} is not independent). Then (see below for more explanation)

lg i(G) = H(X)

= H(XV \A) +H(XA | XV \A)

≤ 1

d

∑
v∈A

H(XN(v)) +
∑
v∈A

H(Xv | XV \A) (16)

≤ 1

d

∑
v∈A

(
H(Cv) +H(XN(v) | Cv) + dH(Xv | Cv)

)
(17)

≤ 1

d

∑
v∈A

Pr[Cv]

(
lg

1

Pr[Cv]
+ lg|supp(XN(v) | Cv)|+ d lg|supp(Xv | Cv)|

)
+ Pr[Cv]

(
lg

1

Pr[Cv]
+ lg|supp(XN(v) | Cv)|+ d lg|supp(Xv | Cv)|

)
≤ 1

d

∑
v∈A

Pr[Cv]

(
lg

1

Pr[Cv]
+ lg(i(G[N(v)])− 1) + d lg 1

)
+ Pr[Cv]

(
lg

1

Pr[Cv]
+ lg 1 + d lg 2

)
(18)

≤ 1

d

∑
v∈A

(
Pr[Cv] lg

rd − 1

Pr[Cv]
+ Pr[Cv] lg

2d

Pr[Cv]

)
(19)

≤ 1

d

∑
v∈A

lg(rd + 2d − 1) (20)

=
n

rd
lg(rd + 2d − 1)

For (16) we use Lemma 7.7 with the cover A = {N(v)}v∈A, as linearity tells us

that each vertex not in A has d distinct neighbors in A and so is counted in d of these
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sets. The next inequality (17) follows from inequality (14) because XV \A determines

Cv for each v ∈ V . For (18), note that if v is uncovered then XN(v) must be all

zeros, while if v is covered XN(v) can be any nonempty independent set of G[N(v)].

Similarly, if v is covered then Xv must be 0, while if it is uncovered Xv may be either

0 or 1. For (19) we note that G[N(v)] consists of d disjoint edges of size r − 1 (the

remains of the edges incident to v) along with, perhaps, some more partial edges. An

independent set contains at most one of the r − 1 vertices from each, for at most rd

independent sets. Finally, for (20) we use concavity of the logarithm.

We conjecture that (as is the case for graphs) the bipartiteness condition is not

necessary, although it plays a crucial role in this proof. In the graph case the need for

bipartiteness was alleviated by a clever bijection due to [72], which does not readily

adapt to hypergraphs.

7.2.3 Further work

Actually, more recently this result has been extended to homomorphisms in hyper-

graphs (along the lines of [51]). For two hypergraphs G and F , χ : V (G)→ V (F ) is

a homomorphism if {χ(v)}v∈e ∈ E(F ) for every e ∈ E(G).

Theorem 7.8 ([65]). For any r-uniform, d-regular, linear hypergraph G on n vertices

and any r-uniform hypergraph F (with loops allowed, so that the hyperedges may be

multisets),

lg hom(G,F ) ≤ 1

d

∑
v∈V (G)

lg hom(Kr×p(v), F )

where p(v) is the number of edges in which v is the last vertex (according to some

arbitrary fixed ordering), and Kr×p is the r-uniform, p-regular (non-linear) graph

constructed by expanding each vertex on one side of Kp,p into r − 1 vertices.

In particular, if G is a bipartite hypergraph then putting the distinguished set (of
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size n/r) at the end of the ordering gives

1

n
lg hom(G,F ) ≤ 1

rd
lg hom(Kr×d, F ).

We can obtain independent sets as homomorphisms by taking F to be the hypergraph

with V (F ) = {v0, v1} and E(F ) = {{v0, . . . , v0}, {v0, . . . , v0, v1}}. Since i(Kr×d) =

2d + rd − 1, Theorem 7.5 follows as a corollary. Indeed, by using different target

hypergraphs F this homomorphism result also gives bounds for the other definitions

of hypergraph independent sets mentiond above.

While the same argument in the case of graphs immediately gives an extremal

graph, this is not the case for hypergraphs, since we have bounded the number of in-

dependent sets in uniform, regular, linear hypergraphs by the number of independent

sets in a hypergraph which is highly non-linear, so it is possible that the bound may

be improved. In fact, while this argument agrees with the correct bound for r = 2, it

is very far from the truth when d = 2 as r increases (i.e., graph matchings).

It may well be possible to remove the bipartiteness condition from these results

for hypergraphs, just as for graphs. Zhao [72] achieves this in the graph case by

giving an injection from independent sets in an arbitrary graph to independent sets

in a bipartite version of that graph, an argument which he was later able to extend

to a larger (but still relatively small) class of graph homomorphisms [73]. However,

it is unclear how to extend this argument to hypergraphs, even in the simple case

of independent sets when r = 3, since the most natural bipartite construction is not

linear.

7.3 The Occupancy Method

To prove our second bound on independent sets in regular hypergraphs we will use

the occupancy method [23], which we have already used in Section 6.2 to find the

extremal graph for Widom-Rowlinson configurations. While in this instance we do not

immediately find an extremal hypergraph, the basic method is very similar, and hinges
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on the following observation about the hard-core distribution for random independent

sets.

Consider a random independent set I chosen from the probability distribution

Pr[I] :=
λ|I|

PG(λ)
.

(This distribution is well known in the statistical physics literature as the hard-core

model.) Call a vertex x ∈ I occupied and let

αG := E[|I|]/n

be the expected fraction of vertices which are occupied by this random independent

set. Then we can write

αG =
λP ′G(λ)

nPG(λ)
= λ

d

dλ

[
1

n
lnPG(λ)

]
. (21)

Since lnPG(0) = ln 1 = 0 for all G, integrating over λ shows that a graph which

maximizes αG for all λ is also the maximizer for 1
n

logPG(λ). More generally, to

bound the normalized partition function at λ0 it suffices to bound the occupancy

fraction αG for all 0 < λ < λ0. In what follows we will always assume λ > 0.

We can get a local estimate of αG by examining (along with the independent set

I) a uniformly random vertex v and a random edge e containing v, so that αG =

Pr[v ∈ I]. Because G is regular and uniform this is equivalent to picking e uniformly

and then picking v uniformly from e.

Say a vertex x is covered by a vertex y if y ∈ I and x ∼ y. Note that any x ∈ I

is uncovered. Call an uncovered vertex which is also unoccupied available, and let

A be the set of available vertices. Let N(v) denote the neighborhood of v, and let

N̂(v) = N(v) ∪ {v}.

Call a vertex externally uncovered if it is not covered by any vertex outside of N̂(v),

and let Cv be the hypergraph G restricted to v and its externally uncovered neighbors

(keeping all partial edges, including those of size 1, so that Cv is still d-regular, but
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no longer uniform). Let C be the collection of all such possible configurations. For

each C ∈ C write p(C) = Pr[Cv = C] for the distribution of Cv and let PC(λ) be

the partition function for the hypergraph C. This partition function includes the one

configuration with v ∈ I (of weight λ).

We are interested in maximizing

αG =
∑
C∈C

p(C) Pr[v ∈ I | Cv = C] =
∑
C∈C

p(C)
λ

PC(λ)

over all hypergraphs G. However, the only terms in this formula which depend at

all on the original hypergraph G are the probabilities p(C). Thus it will be useful to

know more about which distributions p can actually arise from hypergraphs in this

way.

Let t(e) := |e ∩ A| be the number of available vertices in e. We also know that

Pr[v ∈ A | t(e) = t] = t/r

for each 0 ≤ t ≤ r. Conditioning on Cv = C, we have

t

r
Pr[t(e) = t] = Pr[v ∈ A, t(e) = t]

=
∑
C

p(C) Pr[v ∈ A, t(e) = t | Cv = C]

=
∑
C

p(C) Pr[v ∈ A | Cv = C] Pr[t(e) = t | v ∈ A, Cv = C].

We can calculate Pr[v ∈ A | Cv = C] = 1/PC(λ) (since only the empty independent

set on C leaves v available) and

Pr[t(e) = t | v ∈ A, Cv = C] =
dt(C)

d
=: ηt(C),

where dt(C) is the number of size-t edges containing v in C (since whenever v is avail-

able t(e) = |e| and all d edges containing v are equally likely). Thus the probabilities

p(C) must satisfy∑
C

p(C)
ηt(C)

PC(λ)
=
t

r
Pr[t(e) = t] =

t

r

∑
C

p(C) Pr[t(e) = t | Cv = C]
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giving linear constraints

∑
C

p(C)

(
t Pr[t(e) = t | Cv = C]− r ηt(C)

PC(λ)

)
= 0 ∀ 0 ≤ t ≤ r.

When t = r the constraint holds for any choice of p(C), since t(e) = r precisely when

v is available and we pick an edge e of size r in C. It is also trivial for t = 0, since

ηt = 0 (every edge containing v has size at least 1).

These linear constraints (along with the constraint that p should be a probability

distribution over neighborhood configurations) give a linear program (LP) relaxation

for the problem of maximizing the occupancy fraction over all d-regular, r-uniform

linear hypergraphs G, and the optimal probability distribuition will give an upper

bound on the occupancy fraction of such a graph—if we can solve the LP.

Remark 7.9. This LP relaxation generalizes both the relaxation for independent sets

and that for matchings which yield tight bounds in [23], corresponding to the cases

r = 2 and d = 2, respectively. In both prior uses the existence of triangles had no

effect on the maximizing configuration. In this case triangles seem to have a more

complicated effect on the constraints and we have not been able to show that allowing

triangles does not affect the optimum configuration.

7.3.1 LP relaxation for triangle-free hypergraphs

It remains to calculate Pr[t(e) = t | Cv = C], which can be quite complicated.

However, the computation is vastly simplified by assuming that the hypergraph is

triangle-free, i.e., that no edge contains more than one vertex from N(v) unless it

also contains v itself. Note that the Hamming hypergraph H[r]d which was the focus

of Ordentlich & Roth’s investigation satisfies this property, so restricting to the class

of triangle-free hypergraphs still yields interesting results.

The possible neighborhood configurations C in a triangle-free hypergraph are com-

pletely parameterized by the number of edges dt(C) of each size t, as these are the
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only nontrivial edges in Cv. For such a neighborhood C,

PC(λ) = λ+
r∏
s=1

(1 + (s− 1)λ)ds(C).

For t 6= 0, one can obtain t(e) = t given C either by picking e to be an edge of size t

and taking the empty independent set or by picking an edge of size t+1 and covering

v by one or more vertices outside that edge (the edge itself must be unoccupied, of

course). That is, for 1 ≤ t ≤ r

Pr[t(e) = t | Cv = C] =
ηt(C) + ηt+1(C)(PCt(λ)− 1)

PC(λ)
,

where PCt(λ) is the partition function for C with an edge of size t+ 1 and v removed;

this is just a collection of disjoint edges. In particular,

PCt(λ) =
PC(λ)− λ

1 + tλ
.

Finally, we can write a linear program relaxation of our problem with variables

p(C):

α∗

λ
= max

∑
C

p(C)
1

PC(λ)
subject to (22)

∑
C

p(C)

PC(λ)

(
ηt(C) + ηt+1(C)

(
PC − λ
1 + tλ

− 1

)
− r ηt

t

)
= 0 ∀ 1 ≤ t ≤ r − 1

∑
C

p(C) = 1

p(C) ≥ 0 ∀C ∈ C.

7.3.2 A proposed primal solution

For d, r > 2 the optimal solution for the relaxation does not seem likely to be feasible

for the unrelaxed problem and so is probably not a tight bound, but it (or, more

generally, any feasible solution to the dual LP) would still give an upper bound on

the occupancy fraction (and hence the partition function).

Until recently, we believed the following conjecture, at least for the triangle-free

case:
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Conjecture 7.10. The optimum of this relaxation is the distribution p∗ supported on

the neighborhoods It with with ηt(It) = 1 (so that all of the edges in It have size t).

There is in fact a unique feasible solution with this support, which is realized in

the case r = 2 by Kd,d and in the case d = 2 by the r × r grid H[r]2 . There is also a

unique setting of the dual variables Λ∗ satisfying complementary slackness for p∗, i.e.,

such that the constraints corresponding to the configurations It hold with equality.

However, we have recently found counterexamples to dual feasibility showing that

Λ∗ is not always dual-feasible when r ≥ 8 and d is sufficiently large. On the other

hand, we have not yet found a counterexample for any r ≤ 7. Indeed, we will see in

Section 7.3.6 that Conjecture 7.10 is true for r = 3 and in Section 7.3.7 we will give

an outline of a proof technique which may work for 4 ≤ r ≤ 6.

If we enforce support only on configurations Is the only nonzero terms in the

primal constraint for t are those with C ∈ {It, It+1}. Writing q(s) = p∗(Is)/PIs , the

constraint then becomes

q(t)(1− r
t
) + q(t+ 1)((1 + tλ)d−1 − 1) = 0 ∀1 ≤ t ≤ r − 1.

This is effectively a recursion in q(t), along with the “boundary” condition that

r∑
t=1

p∗(It) =
r∑
t=1

q(t)PIt = 1.

Writing

v(t) :=
q(t)

q(r)
=

r−1∏
i=t

q(i)

q(i+ 1)

=
r−1∏
i=t

( i

r − i

)
((1 + iλ)d−1 − 1) =

(
r − 1

t− 1

) r−1∏
i=t

((1 + iλ)d−1 − 1)

and Z =
∑

t PIt(λ)v(t), the proposed solution to the primal is

q(t) =
v(t)

Z

p∗(It) = PIt(λ)q(t) =
PIt(λ)v(t)

Z
.
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The objective function value at this point is

α∗

λ
=

r∑
t=1

p(It)

PIt
=
∑
t

q(t) =

∑
t v(t)

Z
. (23)

Unfortunately this conjectured bound is complicated to write and its asymptotics

are not at all obvious. We will discuss its asymptotics in Section 7.3.8.

7.3.3 The dual LP

The LP dual to (22) is (in variables Λ and Λt, 1 ≤ t ≤ r − 1)

α∗

λ
= min Λ subject to

ΛPC(λ) +
r−1∑
t=1

Λt

(
ηt+1(C)

(
PC(λ)− λ

1 + tλ
− 1

)
− ηt(C)

(r
t
− 1
))
≥ 1 ∀C ∈ C.

To show that the primal optimum is supported on the configurations Is, we show

that there is a feasible solution to the dual for which the corresponding constraints

are tight. We can solve for candidate values Λ∗ and Λ∗t by setting these r constraints

to equality. To simplify notation, we will write

Qt := PIt(λ)− λ = (1 + (t− 1)λ)d.

Since for Is only the t = s and t = s − 1 terms in the sum are nonzero, the

corresponding constraint becomes

Λ∗PIs + Λ∗s−1

(
Qs

1 + (s− 1)λ
− 1

)
− Λ∗s

(r
s
− 1
)

= 1, (24)

where we take the convention that Λ∗s = 0 whenever s ≤ 0 or s ≥ r. This gives a

system of linear equations for the dual variables which clearly has a unique solution.

We can rewrite this (for 0 ≤ s < r) as

Λ∗s =

(
s

r − s

)[
Λ∗s−1

(
Qt

1− (s− 1)λ
− 1

)
+ Λ∗(Qs + λ)− 1

]
.

Proposition 7.11. The solution to the recurrence at = ftat−1 + gt with ft 6= 0 is

at =

(
t∏

k=1

fk

)(
a0 +

t∑
m=1

gm∏m
k=1 fk

)
.
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We can use this to give an explicit formula for the Λ∗t s, using

at = Λ∗t , ft =

(
t

r − t

)(
Qt

1− (t− 1)λ
− 1

)
, gt =

(
t

r − t

)
Λ∗(Qt + λ).

One slight hitch here is that by this definition we have f1 = 0. However, since f1 is

only ever used to multiply by Λ0 = 0 we can actually set it to whatever we like. In

this case it is easiest to set f1 = 1. Then the formula is

Λ∗t =

(
t∏

k=2

fk

)(
t∑

m=1

gm∏m
k=2 fk

)
.

Furthermore,
t∏

k=2

fk =

∏t−1
k=1((1 + kλ)d−1 − 1)(

r−1
t

) =
t

r − t

(
v(1)

v(t)

)
.

Plugging this in above gives (for 1 ≤ t < r)

Λ∗t =
t

r − t

t∑
s=1

v(s)

v(t)
(Λ∗PIs(λ)− 1) (25)

=
1

Z

t

r − t

t∑
s=1

v(s)

v(t)

r∑
i=1

v(i)(Qs −Qi).

This formula of course fails for t = r (because fr is undefined), but plugging

Λ∗r = 0 into (24) for s = r allows us to solve for Λ∗ and verify that it is equal to α∗/λ

from the primal solution, as expected from complementary slackness.

7.3.4 Dual feasibility

To prove Conjecture 7.10 we must show that the setting of the dual variables Λ∗ and

Λ∗t is dual-feasible. In particular, for every neighborhood configuration C, we must

show

Λ∗PC(λ) +
∑
t

Λ∗tηt+1(C)
PC(λ)− λ

1 + tλ
≥ 1 +

∑
t

Λ∗tηt+1(C) +
∑
t

Λ∗tηt(C)
(r
t
− 1
)

= 1 +
∑
t

ηt(C)
[
Λ∗t−1 + Λ∗t

(r
t
− 1
)]
.
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Recalling the notation Qt = PIt(λ) − λ, we will also slightly abuse this notation

by writing Qη = PC(λ) − λ =
∏

tQ
ηt
t (where η = (ηt(C))rt=1; we may also use this

second formula to define Qη for any η ∈ Rr). Substituting

Λ∗t−1 + Λ∗t

(r
t
− 1
)

= Λ∗PIt(λ) + Λ∗t−1

Qt

1 + (t− 1)λ
− 1

from (24), the constraint for C becomes

Λ∗PC(λ) +
∑
t

ηt+1
Λ∗tQη

1 + tλ
≥ 1 +

∑
t

ηt

[
Λ∗PIt(λ) +

Λ∗t−1Qt

1 + (t− 1)λ
− 1

]
∑
t

ηt

[
Λ∗PC(λ) +

Λ∗t−1Qη

1 + (t− 1)λ

]
≥
∑
t

ηt

[
Λ∗PIt(λ) +

Λ∗t−1Qt

1 + (t− 1)λ

]
∑
t

ηtQη

[
Λ∗ +

Λ∗t−1

1 + (t− 1)λ

]
≥
∑
t

ηtQt

[
Λ∗ +

Λ∗t−1

1 + (t− 1)λ

]
.

Finally, we can write the constraints simply as a slack constraint

∑
t

ηt(Qη −Qt)

(
Λ∗ +

Λ∗t−1

1 + (t− 1)λ

)
≥ 0 (26)

for all convex combinations η such that dη is integral.

Recalling the formulas (23) and (25) for Λ∗ = α∗/λ and Λ∗t and multiplying

through by the nonnegative common denominator Z, the constraint (26) expands to

r∑
t=1

ηt(Qη −Qt)

1 + (t− 1)λ

r∑
i=1

v(i)

(
1 + (t− 1)λ+

( t− 1

r − t+ 1

) t−1∑
s=1

v(s)

v(t− 1)
(Qs −Qi)

)
≥ 0

The left hand side is a polynomial in λ.

7.3.5 The slack constraint

We would like to show that

S(η) :=
∑
t

ηtct(Qη −Qt) ≥ 0

for every convex combination η, where

ct := Λ∗ +
Λ∗t−1

1 + (t− 1)λ
.
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Since we have equality (by construction) when η is a basis vector, it suffices to

show that the only local minima of S(η) on the simplex are at its vertices.

If η is not a vertex of the simplex, then there is a vector u such that the line

segment [η − u, η + u] is contained in the simplex. If η is also a local minimum of S,

then for every such u the univariate function Ŝ(x) = S(η + xu) has a local minimum

on [−1, 1] at x = 0, so we must have Ŝ ′(0) = 0 and Ŝ ′′(0) > 0. Letting Q̂(x) = Qη+xu,

ln(Q̂(x)) =
∑
t

(ηt + utx) lnQt

d

dx
[ln Q̂(x)] =

Q̂′(x)

Q̂(x)
=
∑
t

ut lnQt = lnQu

Ŝ(x) =
∑
t

ct(ηt + utx)(Q̂(x)−Qt)

Ŝ ′(x) =
∑
t

ct

[
ut(Q̂(x)−Qt) + (ηt + utx)Q̂′(x)

]
Ŝ ′′(x) =

∑
t

ct [2utQ
′(x) + (ηt + utx)Q′′(x)]

=
∑
t

ct

[
2utQ̂(x) lnQu + (ηt + utx)Q̂(x) ln2Qu

]
= Q̂(x) lnQu

∑
t

ct[2ut + (ηt + utx) lnQu]

= Q̂(x) lnQu

∑
t

ct[ut(2 + x lnQu) + ηt lnQu].

So at a non-vertex local minimum we would have

0 = Ŝ ′(0) =
∑
t

ct [ut(Qη −Qt) + ηtQη lnQu]

0 ≤ Ŝ ′′(0) =
∑
t

ct
[
2utQη lnQu + ηtQη ln2Qu

]
= lnQu

∑
t

ct [2utQη + ut(Qt −Qη)]

= lnQu

∑
t

ctut(Qt +Qη).
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That is, at a non-vertex local minimum η,

∑
t

ctut(Qt +Qη) ≥ 0 (27)

for every u ∈ Rr with
∑

t ut = 0, Qu ≥ 1, and supp(u) ⊆ supp(η).

In particular, if i = max(supp(η)) and j = min(supp(η)) it suffices to show that

the sum in (27) is negative for u = ei− ej (where ek is the kth basis vector), i.e., that

ci(Qi +Qη) < cj(Qj +Qη).

Since Qη can be anything between Qj and Qi and the cks are (as we will show)

decreasing in k, this is the same as showing that

ci(Qi +Qj) < 2cjQj

whenever i > j.

We will show that this is true when r = 3. Unfortunately, when r ≥ 4 it is not,

and indeed it does not even seem to be the case that Ŝ ′′(0)− lnQuŜ
′(0) > 0 for some

u = ei − ej.

7.3.6 The case r = 3

When r = 3, we can write

Zc1 = (1 + λ)d−1(1 + 2λ)d−1 + (1 + 2λ)d−1 − (1 + λ)d−1

Zc2 =
3(1 + 2λ)d−1 − 1

2(1 + λ)

Zc3 =
2(1 + λ)d−1 − 1

1 + 2λ

We must show that c1 > c2 > c3 > 0 and that

ci(Qi +Qj) < 2cjQj

whenever i > j.

88



Proposition 7.12. c1 > c2 > c3.

Proof. To see the first inequality it suffices to see that

(1 + λ)d((1 + 2λ)d−1 − 1) + (1 + λ)(1 + 2λ)d−1 > 2(1 + 2λ)d−1 − 1

>
3

2
(1 + 2λ)d−1 − 1

2
.

For the second it suffices to show that

3(1 + 2λ)d − (1 + 2λ) > 4(1 + λ)d − 2(1 + λ).

Indeed, this is true termwise as polynomials in λ:

2 + (6d− 2)λ+
d∑

k=2

3

(
d

k

)
2kλk > 2 + (4d− 2)λ+

d∑
k=2

4

(
d

k

)
λk.

since 3(2k) ≥ 4 when k ≥ 2.

Finally, it is clear from inspection that c3 > 0.

Proposition 7.13. ci(Qi +Qj) < 2cjQj whenever 1 ≤ j < i ≤ 3.

Proof. For i = 2 and j = 1 we must show that

(3(1 + 2λ)d−1 − 1)((1 + λ)d + 1) < 4(1 + λ)d((1 + 2λ)d−1 − 1) + 4(1 + λ)(1 + 2λ)d−1).

This simplifies to showing

(1 + λ)d(1 + 2λ)d−1 + (1 + 2λ)d + 2λ(1 + 2λ)d−1 − 3(1 + λ)d + 1 > 0.

As before, this is true termwise as a polynomial in λ:

(1 + λ)d(1 + 2λ)d−1 + (1 + 2λ)d + 2λ(1 + 2λ)d−1 − 3(1 + λ)d + 1

= λ(d+ 2(d− 1) + 2d− 3d) +
∑
k≥2

λk
(∑

`

(
d
k−`

)(
d−1
`

)
2` +

(
d
k

)
2k +

(
d−1
k−1

)
2k − 3

(
d
k

))
> 0

since 2k > 3 when k ≥ 2.
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For i = 3 and j = 1, we must show that

(2(1 + λ)d−1 − 1)((1 + 2λ)d + 1) < 2((1 + λ)d−1 + 1)(1 + 2λ)d − 2(1 + λ)d−1(1 + 2λ).

This simplifies to

3(1 + 2λ)d − 4(1 + λ)d + 1 > 0,

which is once again true termwise:

3(1 + 2λ)d − 4(1 + λ)d + 1 =
∑
k≥1

λk
(

3

(
d

k

)
2k − 4

(
d

k

))
> 0

since 3(2k) > 4 when k ≥ 1.

For i = 3 and j = 2, we must show that

(2(1 + λ)d − (1 + λ))((1 + 2λ)d + (1 + λ)d) < (3(1 + 2λ)d − (1 + 2λ))(1 + λ)d.

This simplifies to

(1 + 2λ)d − (1 + λ)d−1
(

2(1 + λ)d − (1 + 2λ)d + λ
)
> 0,

so it suffices to see that

2(1 + λ)d − (1 + 2λ)d =
∑
k≥0

(2− 2k)λk < 1.

Thus we have proven

Theorem 7.14. For any d-regular, 3-uniform, linear, triangle-free hypergraph G and

for any λ > 0,

αG(λ)

λ
≤ Λ∗ =

(1 + 2λ)d−1((1 + λ)d−1 + 1)− (1 + λ)d−1

3(1 + 2λ)d−1(λ+ (1 + λ)d)− 3(1 + λ)d + 1
.
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7.3.7 An approach for r = 4

We have seen that at a local minimum η of the slack it must be the case that

ci(Qi +Qη) < cj(Qj +Qη) ∀j < i ∈ supp(η). (28)

In the case r = 3 we saw that this was impossible, but when r ≥ 4 (28) can be true

for j = 1, so we will have to rule out those values of η separately. From this point

the proposed proof method is as follows:

(a) Show that ci < cj when j < i.

(b) Show that if η1 ≥ 1/2, taking u = η− e1 (i.e., considering the 1-D slice through

η and e1) yields Ŝ ′(0) < 0, so no such point can be a local minimum.

(c) Show that for 2 ≤ j < i ≤ r

ciQi − cjQj < (cj − ci)Qj,

so that inequality (28) cannot hold when min(supp(η)) = j ≥ 2.

(d) Show that inequality (28) cannot hold when 0 < η1 < 1/2 by showing that

ciQi − c1 ≤ (c1 − ci)
√
Q2 < (c1 − ci)Qη

for all 2 ≤ i ≤ r.

These statements all seem to be true for r ≤ 6 (see See Figure 16 for some plots

for r = 4). However this approach is not sustainable either, as (d) fails for r ≥ 7

and (c) fails for r ≥ 8 (see Figure 17). It nevertheless seems likely that this approach

would succeed in proving the case r = 4.

7.3.8 Asymptotics of the occupancy bound

We have just shown that when r = 3 the value α∗/λ obtained from the LP above is an

upper bound on the occupancy fraction of any d-regular, r-uniform, linear, triangle-

free hypergraph. We want to find the asymptotics of α∗/λ and, more importantly,
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Figure 16: Plots of the steps in the approach for r = 4.
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Figure 17: Failure of the approach outlined above when r ≥ 7.
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the asymptotics of the corresponding bound

B∗(µ) :=

∫ µ

0

α∗

λ
dλ

on the scaled log partition function.

Theorem 7.15. For any d-regular, 3-uniform, linear, triangle-free hypergraph G on

n vertices,

lnPG(λ)

n
≤ B∗(λ) =

ln(1 + λ)

3
+O

(
1

d

)
.

Proof. The inequality follows from Theorem 7.14 and formula (21) for the occupancy

fraction, so it remains to show the asymptotics of the bound. Let us parameterize

λ = x/d, and let

G(d, λ) =
α∗

λ
− 1

3(1 + λ)

=
3(1 + 2λ)d−1 − 1

3(1 + λ)
(

3
(
(1 + λ)d + λ

)(
(1 + 2λ)d−1 − 1

)
+ (1 + 3λ)

)
=

3e2x − 1

3(3e3x − 3ex + 1)
(1 + od(1)),

which approaches 0 exponentially fast as x→∞. Then∫ 1

0

α∗

λ
dλ =

∫ 1

0

dλ

3(1 + λ)
+

∫ 1

0

G(d, λ)dλ

=
ln(2)

3
+

1

d

∫ d

0

G(d, x/d)dx

≤ ln(2)

3
+

1 + o(1)

d

∫ ∞
0

(
3e2x − 1

3(3e3x − 3ex + 1)

)
dx

=
ln(2)

3
+
O(1)

d
.

The asymptotics in r are harder to pin down, but we conjecture
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Figure 18: Plots of y = rd
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(
B∗(1)− ln 2

r

)
showing that the limits seem to converge.

The actual exponent on ln r in the bound may be less than 2, but it is certainly not
always 1 as in Conjecture 7.3.

Conjecture 7.16. The bound B∗(λ) on the normalized log partition function obtained

from Conjecture 7.10 satisfies

lnPG(λ)

n
≤ B∗(λ) =

ln(1 + λ)

r
+O

(
log2 r

rd

)
.

Of course this cannot be the correct asymptotics in terms of both r and d, since

when d = 2 we know that log r is correct rather than log2 r (since the method of [23]

shows that the bound B∗ is both true and tight when d = 2). However, for large d the

squared logarithm does seem to be correct asymptotics for this bound. See Figure 18.

On the other hand, the asymptotics of B∗ in r seem to be rather a moot point, since

Conjecture 7.10 does not hold for large r.

The discovery that Conjecture 7.10 is not always true does, however, raise the

interesting question of what the actual optimum to our LP relaxation is. In partic-

ular, it may in fact be the case that when both r and d are large the maximizing

hypergraphs look very different from either of the known optima for small r or d.
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