1. Graph Theory

Let G be a connected simple graph that is not a cycle and is not complete. Prove that there exist distinct non-adjacent vertices $u, v \in V(G)$ such that the graph obtained from G by deleting both u and v is connected.

Solution: Let us say that a vertex v of a connected graph H is *remote* if v belongs to an end-block of H and is not a cutvertex of H. (An end-block is a block that has degree at most one in the block decomposition tree of H.) Thus if H is 2-connected, then every vertex of H is remote. Furthermore, every connected graph on at least two vertices has at least two remote vertices.

If G has a cutvertex x, then G can be written as $G_1 \cup G_2$, where $V(G_1) \cap V(G_2) = \{x\}$. For $i = 1, 2$ let z_i be a remote vertex in G_i, chosen in a block in which x is not a remote vertex. Then z_1, z_2 are as desired.

Thus we may assume that G is 2-connected. Since G is not a cycle it has a vertex u of degree at least three. Since G is not complete the hypothesis implies that u is not adjacent to some vertex $v \in V(G)$. Since we may assume that $G \setminus u \setminus v$ is disconnected, the graph $G \setminus u$ is not 2-connected, and hence has two non-adjacent remote vertices a, b belonging to different end-blocks of $G \setminus u$. It follows that $G \setminus a \setminus b$ is connected, as desired.
2. Probability

Let \(\{X_n\} \) be a sequence of independent identically distributed random variables. Let

\[
S_n := X_1 + \cdots + X_n.
\]

Show that

\[
\frac{S_n}{\log n} \to 0 \quad \text{a.s.}
\]

implies that, for all \(c > 0 \), \(E e^{c|X_1|} < +\infty \).

Solution: The condition

\[
\frac{S_n}{\log n} \to 0 \quad \text{as } n \to \infty \quad \text{a.s.}
\]

implies that also

\[
\frac{S_{n-1}}{\log n} = \frac{S_{n-1}}{\log(n-1)} \frac{\log(n-1)}{\log n} \to 0 \quad \text{a.s.}
\]

Hence

\[
\frac{X_n}{\log n} \to 0 \quad \text{as } n \to \infty \quad \text{a.s.,}
\]

which means that, for all \(\varepsilon > 0 \), the following event

\[
\left\{ \frac{|X_n|}{\log n} \geq \varepsilon \text{ i.o.} \right\}
\]

has probability 0. The events

\[
\left\{ \frac{|X_n|}{\log n} \geq \varepsilon \right\}, \quad n = 1, 2, \ldots
\]

are independent. By the Borel-Cantelli Lemma, this implies that for all \(\varepsilon > 0 \)

\[
\sum_{n=1}^{\infty} \mathbb{P}\left\{ \frac{|X_n|}{\log n} \geq \varepsilon \right\} < +\infty.
\]

Since the random variables \(X_n \) are identically distributed, the last series can be also written as

\[
\sum_{n=1}^{\infty} \mathbb{P}\left\{ |X_1| \geq \varepsilon \log n \right\} < +\infty.
\]

Take \(\varepsilon = \frac{1}{e} \). Then we have

\[
\sum_{n=1}^{\infty} \mathbb{P}\left\{ e^{c|X_1|} \geq n \right\} = \sum_{n=1}^{\infty} \mathbb{P}\left\{ |X_1| \geq \varepsilon \log n \right\} < +\infty,
\]

which implies that \(E e^{c|X_1|} < +\infty \) (because for a nonnegative random variable \(Y \) we have \(EY < +\infty \) if and only if \(\sum_{n=1}^{\infty} \mathbb{P}\{Y \geq n\} < +\infty \).
3. Analysis of Algorithms

1. Let \(G = (V, E) \) be a graph and let \(w : E \to \mathbb{R}^+ \) be an assignment of nonnegative weights to its edges. For \(u,v \in V \) let \(f(u,v) \) denote the weight of a minimum \(u-v \) cut in \(G \). Show that for \(u,v,w \in V \),

\[
f(u,v) \geq \min\{f(u,w), f(w,v)\}.
\]

Generalize this to show that for \(u,v,w_1, \ldots, w_r \in V \),

\[
f(u,w) \geq \min\{f(u,w_1), f(w_1,w_2), \ldots, f(w_r,v)\}.
\]

2. Let \(T \) be a tree on a vertex set \(V \) with weight function \(w' \) on its edges. We will say that \(T \) is a flow equivalent tree if it satisfies the following condition: for each pair of vertices \(u,v \in V \), the weight of a minimum \(u-v \) cut in \(G \) is the same as that in \(T \). Let \(K \) be the complete graph on \(V \). Define the weight of each edge \((u,v) \) in \(K \) to be \(f(u,v) \). Show that any maximum weight spanning tree in \(K \) is a flow equivalent tree for \(G \).

Solution:

1. Pick a minimum weight cut separating \(u \) and \(v \). It either separates \(u \) and \(w \), or \(w \) and \(v \). Thus, it is a \(u-w \) cut or a \(w-v \) cut, and the first part follows. Similarly, in the second part the minimum cut separating \(u \) and \(v \) separates \(w_i \) and \(w_{i+1} \) for some \(i = 0,1,\ldots,r+1 \), where \(w_0 \) means \(u \) and \(w_{r+1} \) means \(v \).

2. Let \(T \) be a maximum weight spanning tree of \(K \). Pick any two vertices \(u,v \in V \). The weight of a minimum \(u-v \) cut in \(G \) is \(f(u,v) \), by definition. The weight of a minimum \(u-v \) cut in \(T \) is the minimum weight edge in the unique path in \(T \) from \(u \) to \(v \). Let the path be \(w_0 = u, w_1, w_2, \ldots, w_r, w_{r+1} = v \). Note that the weights of the edges on this path are \(f(u,w_1), f(w_1,w_2), \ldots, f(w_r,v) \). Thus the minimum of these, by part (1), is no more than \(f(u,v) \). We deduce that equality holds, for if \(f(u,v) > f(w_i,w_{i+1}) \) for some \(i = 0,1,\ldots,r \), then by replacing in \(T \) the edge \(w_i, w_{i+1} \) by \(uv \) we obtain a spanning tree of strictly larger weight, contrary to the maximality of \(T \).
4. Linear Programming

I found a damaged sheet with the data of a linear programming program. This is what was on the sheet:

Problem:

\[
\begin{align*}
\text{minimize} & \quad 9x_1 - 2x_2 - 12x_3 + 31x_4 \\
\text{s.t.} & \\
1?x_1 - x_2 - 2x_3 + 2?x_4 & \geq 9 \\
-1?x_1 - x_2 - 1?x_3 + 2x_4 & \geq 10 \\
?x_1 + ??x_2 - ??x_3 - ?x_4 & \geq ? \\
-?x_1 + ??x_2 + ??x_3 - ?x_4 & \geq ? \\
??x_1 + ?x_2 + ?x_3 + ?x_4 & \geq -?? \\
\end{align*}
\]

\[x_1, x_2, x_3, x_4 \geq 0\]

Solution:

\[< \text{computations}>\]

Answer: The optimal value is 1?.

Above, “?” stands for a decimal digit 0,1,...,9, perhaps different in different places. What is the optimal value in the problem? Justify your answer.

Solution. The problem was misstated. From the second constraint we get \(2x_4 \geq 10 + 1?x_1 + x_2 + 1?x_3 \geq 10 + 10x_1 + x_2 + 10x_3\), and hence \(9x_1 - 2x_2 - 12x_3 + 31x_4 \geq 9x_1 - 2x_2 - 12x_3 + 31(10 + 10x_1 + x_2 + 10x_3)/2 \geq 155\). Therefore, the optimal value is not of the form 1?.

\[\text{ACO Comprehensive Exam} \quad 19 \text{ March 2007}\]
5. Combinatorial Optimization

Given a set of positive numbers b_1, \ldots, b_n, consider the following mixed-integer set

$$S = \{(x, y) \in \mathbb{R}_+ \times \{0, 1\}^n : x + ay_i \geq b_i \quad i = 1, \ldots, n\},$$

where $a \geq \max\{b_i : i = 1, \ldots, n\}$. Consider a subset $R := \{i_1, \ldots, i_r\} \subseteq \{1, \ldots, n\}$ indexed such that $0 =: b_{i_0} < b_{i_1} \leq b_{i_2} \leq \cdots \leq b_{i_r}$, and the corresponding inequality

$$x + \sum_{k=1}^r (b_{i_k} - b_{i_{k-1}})y_{i_k} \geq b_{i_r}. \quad (1)$$

1. Prove that the above inequality (for any subset R) is valid for $\text{conv}(S)$.
2. Show that the above family of inequalities can be separated in polynomial time by solving an appropriate shortest path problem.

Solution: 1. Let $R = \{1, 2, \ldots, K\}$ such that $0 =: b_0 \leq b_1 \leq \cdots \leq b_K$. We prove by induction over R. For the base case $r = 1$, inequality (1) is the original inequality $x + ay_1 \geq b_1$ after tightening the coefficient of y_1 (since $a > b_1$). Suppose the inequality (1) corresponding to $\{1, \ldots, r\} \subset R$,

$$x + \sum_{k=1}^r (b_{i_k} - b_{i_{k-1}})y_{i_k} \geq b_r \quad (2)$$

is valid. We need to show that

$$x + \sum_{k=1}^{r+1} (b_{i_k} - b_{i_{k-1}})y_{i_k} \geq b_{r+1} \quad (3)$$

is valid. Note that the original inequality for $i = r + 1$ (after coefficient tightening)

$$x + b_{r+1}y_{r+1} \geq b_{r+1} \quad (4)$$

is valid. Then if $y_{r+1} = 0$ then (4) implies $x \geq b_{r+1}$ which in turn implies (3) since $\sum_{k=1}^{r+1} (b_{i_k} - b_{i_{k-1}})y_{i_k} \geq 0$.

If $y_{r+1} = 1$ then (3) reduces to (2) and so is valid.

2. We index b_i such that $0 =: b_0 \leq b_1 \leq \cdots \leq b_n$. Given a solution $(x^*, y_1^*, \ldots, y_n^*)$ we need to find a set $R \subseteq \{1, \ldots, n\}$ for which (1) is violated. This can be done by solving a shortest path problem as follows. Construct a directed graph with nodes $\{s, 0, 1, \ldots, n, t\}$ such that there is an arc going from node s to node 0 with length x^*, an arc going from each node $i \in \{1, \ldots, n\}$ to node t with length $-b_i$, and an arc going from a node i to a node j, for $i, j \in \{0, 1, \ldots, n\}$ with $i < j$, of length $(b_j - b_i)y_j^*$. Then it is easy to see that inequality (1) is violated if and only if there is an s-t path with negative total length, and the nodes in $\{1, \ldots, n\}$ of such a path constitute the set R.
6. Algebra

Let G be a group of order 203. If H is a normal subgroup of G of order 7, then show that H is contained in the center of G and that G is abelian.

Solution: Notice that $203 = 7 \cdot 29$. So if we consider that action of G on itself by conjugation the orbits will have size 1 (if they are in the center), 7 or 29. Since H is normal it is left invariant under conjugation. Thus the orbit of any element in H under the action is contained in H. So the size of the orbit of any element in H is either 1 or 7 and if one element has orbit size 7 then every element has orbit size 7. Since the identity is in H and has orbit size 1, all the elements have orbit size 1. Thus H is in the center of G.

Let Z denote the center of G. We know $|Z| \geq 7$ and since H is a subgroup of Z the order of Z is divisible by 7. Thus $|Z| = 7$ or 209. If the order is 209 the G is abelian. So assume the order is 7. Thus $Z = H$ is a normal subgroup of G and we can consider G/Z. This is a group of order 29 and hence must be cyclic. It is well know (or see below) that if G/Z is cyclic then G is abelian. This contradicts our assumption that $|Z| = 7$ and thus $|Z|$ must be 203 and G is abelian.

(Suppose G/Z is cyclic with generator yZ. So every element of G/Z is of the form $(yZ)^n$ for some n. Thus every element of G is of the form $y^n a$ for some $a \in Z$. Given two elements g and h in G then write $g = y^n a$ and $h = y^m b$. We have $gh = y^n ay^m b = y^n y^m ab = y^m y^n ab = y^m by^n a = hg$. Here the second and fourth equality follow by $a, b \in Z$. So G is abelian.)
7. Approximation Algorithms

Let k be a power of two. Consider the following generalization of the Steiner forest problem to higher connectivity requirements: the specified connectivity requirement function r maps pairs of vertices to $\{0, \ldots, k\}$, where k is part of the input. Assume that multiple copies of any edge can be used; each copy of edge e will cost $c(e)$. Give a factor $2 \cdot (\log_2 k + 1)$ algorithm for the problem of finding a minimum cost graph satisfying all connectivity requirements. You are allowed to use the Goemans-Williamson factor 2 Steiner forest algorithm as a subroutine.

Solution. Consider the connectivity requirements of all pairs of vertices written as $\lceil \log_2 k \rceil + 1$ bit integers. Consider the ith slice of these requirements as 0/1 requirement problem, i.e., a Steiner forest problem, for $0 \leq i \leq \lceil \log_2 k \rceil$. Solve it using Goemans-Williamson and multiply the solution by 2^i. Take the union of these $\lceil \log_2 k \rceil + 1$ solutions as the final solution.

Let OPT_f and OPT be the optimal cost of the fractional and integral solutions to given problem. Let OPT_i be the optimal cost of the fractional solution to the ith slice (as a 0/1 problem). Then, the cost of the solution produced is

$$2 \sum_{i=0}^{\lceil \log_2 k \rceil} 2^i OPT_i$$

Since $2^i OPT_i \leq OPT_f$, the claim follow.
7. Randomized Algorithms

Let n be an odd number. There are n cities $\{C_1, C_2, \ldots, C_n\}$ located at equidistant points on a circle. Two cars move at random from city to city, dropping packages at random in the visited cities. In particular, the process works as follows. At every time:

- Each car independently, chooses uniformly one of the two adjacent cities to the one where it is located and moves to it.

- With probability $p = n^{-4}$, the car in the city with the smallest number of packages dropped (among the two cities where the two cars are located) drops a new package. (Ties are broken randomly.)

1. Upper bound the number of packages in the city with the maximum number of packages. This should be a high probability bound (i.e., with probability tending to 1 when n tends to infinity).

2. What would be the result if the n cities were located at the vertices of a d-regular graph (instead of the cycle)? (Each car does a random walk on the vertices of the graph.)

Solution

1. Let T_i the time when the i^{th} package is dropped. Let \mathcal{E} be the event $\{\forall i \leq n, T_{i+1} - T_i \geq n^{5/2}\}$. As $p = n^{-4}$, $\Pr[T_{i+1} - T_i < n^{5/2}] \leq n^{-3/2}$ and using the union bound, $\Pr[\neg \mathcal{E}] \leq n^{-1/2}$. The random walk on the cycle of length n has mixing time $O(n^2 \log n)$. Therefore, conditioning on \mathcal{E} the position of the cars at time T_{i+1} is independent of the position at time T_i, and the process is equivalent to a bins and balls process where two bins are chosen independently at random and a ball is dropped to the least loaded bin. In this process the max load after dropping n balls is $(1 + o(1))\frac{\log \log n}{\log 2}$.

2. Notice that the same argument shows that if the cities are located in a d-regular graph then the maximum load is $(1 + o(1))\frac{\log \log n}{\log 2}$ with probability $1 - 0(n^{-1/2})$.