1. Analysis of Algorithms

Describe an algorithm for deciding if an n-vertex graph G contains a clique of size 6. Explain how to modify the algorithm so it would also find such a clique in G (if one exists). The running time of both algorithms should be $O(n^5)$.

Hint. You may wish to consider a graph with vertex-set O

Solution: Given G let $m = |E|$ and define an m-vertex graph T as follows. Each vertex of T represents an edge of G. We connect two vertices $(u, u'), (v, v')$ of T if and only if u, u', v, v' form a clique of size 4 in G. Then it is easy to see that G contains a clique of size 6 if and only if T contains a triangle. Now we can use fast matrix multiplication to decide in time $O(m^\omega) = O(n^{2\omega}) \ll O(n^5)$ if T contains a triangle. In order to actually find such a triangle, we can use the algorithm we saw in class that finds witnesses for Boolean matrix multiplication in time $O(n^\omega)$.

2. Approximation Algorithms

Let $G = (V, E)$ be a complete graph with distances on its edges; the distance between two vertices u and v is given by $d(u, v)$ and the distances satisfy the triangle inequality. The k-partition problem is to partition V into k subsets, C_1, C_2, \ldots, C_k, so that the maximum distance between any pair of vertices in the same subset is minimized. Formally, define the diameter of a subset $C_r \subset V$ as

$$Diam(C_r) = \max\left\{ d(v_i, v_j) : v_i, v_j \in C_r \right\}$$

Then we wish to find a partition that minimizes $\max_{r \in \{1, 2, \ldots, k\}} Diam(C_r)$.

Now consider the following process. Start with an arbitrary vertex. Call it v_1. Then at the i^{th} step, $i \geq 2$, let

$$\delta_i = \max_u \min_{j \in \{1, 2, \ldots, i-1\}} d(u, v_j)$$

and define v_i to be the vertex u that achieves the maximum. That is, v_i is the vertex u that maximizes the minimum distance of u to one of the vertices in $\{v_1, v_2, \ldots, v_{i-1}\}$.

1. Show that δ_{k+1} is a lower bound on the value of the optimal solution of the k-partition problem.

2. Give an efficient 2-approximation algorithm for the k-partition problem.

Solution. Note that δ_i is a nondecreasing sequence. Let v_1, \ldots, v_{k+1} be the first $k + 1$ points in the sequence found by the process described. Consider the partition on them induced by the optimal k-partition. At least two of the vertices, say v_i and v_j, with $i < j$, must be in the same part of the optimal partition. This implies that the diameter of the part they lie in must be at least δ_j. Therefore, the optimal partition has at least one part of diameter at least δ_{k+1}, i.e., $OPT \geq \delta_{k+1}$.

For the second part, find the first k vertices according to the process. Call these the anchors of a k-partition. For every vertex $u \notin \{v_1, \ldots, v_k\}$, assign it part i if v_i is the closest to u among the anchors (break ties arbitrarily). Then for each part i, for any vertex u in the part, $d(u, v_i) \leq \delta_{k+1}$. Therefore, by the triangle inequality, for any two vertices u, v in the same part i,

$$d(u, v) \leq d(u, v_i) + d(v_i, u) \leq 2\delta_{k+1} \leq 2OPT.$$
3. Theory of Linear Inequalities

Let \(d, f \in \mathbb{R}^n \) be integer vectors with all components positive and let \(t \) be a positive integer. Suppose \(d_i \leq t \) for all \(i = 1, \ldots, n \), where \(d = (d_1, \ldots, d_n)^T \). Let \(A \) be a matrix such that columns of \(A \) are the non-negative integer solutions to the inequality \(d^T x \leq t \). The integer cutting-stock problem is

\[
\min(e^T y : Ay = f, y \geq 0, y \text{ integer})
\]

(1)

where \(e \) is the vector of all 1’s. Show that (1) has an optimal solution with at most \(2^n \) positive components.

Solution. A solution is available upon request.

4. Combinatorial Optimization

Let \(G = (V, E) \) be a complete graph having an even number of vertices and let \(c = (c_e : e \in E) \) be edge weights such that \(c \geq 0 \) and \(c \) satisfies the triangle inequality. For \(X \subseteq V \) let \(\delta(X) \) denote the set of edges with one end in \(X \) and the other end in \(V - X \). Let \(\mathcal{C} \) denote the set of all sets \(D \) of the form \(D = \delta(X) \) such that \(X \subseteq V, |X| \geq 3, |V(G) - X| \geq 3 \) and \(|X| \) is odd. The dual LP for Edmonds’ perfect-matching system is

\[
\begin{aligned}
\text{Maximize } & \sum (y_v : v \in V) + \sum (Y_D : D \in \mathcal{C}) \\
\text{subject to } & y_v + y_w + \sum (Y_D : e \in D \in \mathcal{C}) \leq c_e, \text{ for all } e = vw \in E \\
& Y_D \geq 0, \text{ for all } D \in \mathcal{C}.
\end{aligned}
\]

Show that there exists an optimal dual solution such that \(y_v \geq 0 \) for all \(v \in V \).

Solution. A solution is available upon request.

5. Graph Theory

Let \(k \geq 2 \) be an integer. Prove that in a \(k \)-connected graph, for every set of \(k \) vertices there is a cycle that includes all of them.

Solution: For \(k = 2 \) this follows directly from Menger’s theorem. For \(k > 2 \) there is, by induction, a cycle \(C \) containing \(k - 1 \) of the given vertices, and we may assume that the last vertex, say \(v \), is not on \(C \). The \(k - 1 \) given vertices on \(C \) divide \(C \) into \(k - 1 \) edge-disjoint paths. Let us call those paths segments. If \(|V(C)| = k - 1 \) (that is, \(V(C) \) consists entirely of the given vertices), then let \(l := k - 1 \); otherwise let \(l := k \). By Menger’s theorem there exist \(l \) paths from \(v \) to \(V(C) \), vertex-disjoint, except for \(v \). It follows that some two of those paths, say \(P \) and \(Q \), have ends in the same segment, and hence \(C \cup P \cup Q \) contains a cycle that includes all the given vertices.

6. Probabilistic methods

Let \(G = (V, E) \) be a graph with \(n \) vertices and \(m \) edges. Let \(t \geq 1 \) be arbitrary.
(i) Form a (random) subset T of $V(G)$ by picking a (uniformly) random vertex of the graph t times, with repetition. (Thus $|T| \leq t$.) Let $N(T)$ denote its common neighborhood – the set of vertices adjacent to every vertex of T. Let $X = |N(T)|$.

Show that $E[X] \geq \frac{(2m)^t}{n^{2t-1}}$.

(ii) Suppose that
$$\frac{(2m)^t}{n^{2t-1}} - \binom{n}{s} \left(\frac{k}{n} \right)^t \geq u.$$ Then prove that there exists a subset $U \subset V(G)$ of at least u vertices, such that every set of s vertices in U has at least k common neighbors.

Solution: (i) Note that the probability that a vertex v is in $N(T)$ is just the probability that T is a subset of its neighborhood. Hence, by the convexity of x^t (for $t \geq 1$),
$$E(X) = \sum_{v \in V} \left(\frac{|N(v)|}{n} \right)^t \geq n \left(\frac{1}{n} \sum_{v \in V} \frac{|N(v)|}{n} \right)^t = \frac{(2m)^t}{n^{2t-1}}.$$ (ii) (Use the deletion method.) Let $A := N(T)$. Let Y denote the number of s-sets in A with at most k common neighbors. Suppose the pair $\{u, v\}$ has at most k common neighbors; then the probability that a $\{u, v\} \subset A$ is at most $\left(\frac{k}{n} \right)^t$, since each element of T must lie in the common neighborhood of u and v; the same argument holds for subsets of s vertices, rather than pairs. And so
$$E(Y) \leq \binom{n}{s} \left(\frac{k}{n} \right)^t.$$ By linearity of expectation,
$$E[X - Y] \geq \frac{(2m)^t}{n^{2t-1}} - \binom{n}{s} \left(\frac{k}{n} \right)^t \geq u,$$ and thus there must exist a choice of T such that $X - Y \geq u$. (As usual), simply remove one element from each s-set in A with at most k neighbors, to obtain U as required.

7. Algebra

Prove that any finite subgroup of the multiplicative group of a field is cyclic.

Solution: Let F be a field and G be a finite subgroup of the group $F^\times = F \setminus \{0\}$ under multiplication. Since G is finite and abelian, by the Structure Theorem for Abelian Groups, G is a direct product of finitely many cyclic groups, i.e. $G \cong C_{n_1} \times C_{n_2} \times \cdots \times C_{n_k}$ for some integers $n_1, n_2, \ldots, n_k \geq 2$. It suffices to show that $\gcd(n_i, n_j) = 1$ if $i \neq j$. For $i \neq j$, suppose there is a prime p dividing both n_i and n_j. Then it follows from Sylow Theorem that C_{n_i} and C_{n_j} both contain elements of order p. Since p is prime, if a has order p, then so does a^2, \ldots, a^{p-1}. Hence both C_{n_i} and C_{n_j} contain at least $p - 1$ elements of order p. However, in a field F, the polynomial $x^p - 1$ has at most $p - 1$ roots other than 1, so C_{n_i} and C_{n_j} have a non-empty intersection, which cannot happen in a direct product.