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SUMMARY

Let P be a graph with a vertex v such that P − v is a forest and let Q be an outerpla-

nar graph. In 1993 Paul Seymour asked if every two-connected graph of sufficiently large

path-width contains P or Q as a minor. Define g(H) as the minimum number for which

there exists a positive integer p(H) such that every g(H)-connected H-minor-free graph

has path-width at most p(H). Then g(H) = 0 iff H is a forest and there is no graph H with

g(H) = 1, because path-width of a graph G is the maximum of the path-widths of its con-

nected components. LetA be the graph that consists of a cycle (a1, a2, a3, a4, a5, a6, a1) and

extra edges a1a3, a3a5, a5a1. Let C3,2 be a graph of 2 disjoint triangles. In 2014 Marshall

and Wood conjectured that a graph H does not have K4, K2,3, C3,2 or A as a minor if and

only if g(H) ≤ 2. In this thesis we answer Paul Seymour’s question in the affirmative and

prove Marshall and Wood’s conjecture, as well as extend the result to three-connected and

four-connected graphs of large path-width. We introduce “cascades”, our main tool, and

prove that in any tree-decomposition with no duplicate bags of bounded width of a graph

of big path-width there is an “injective” cascade of large height. Then we prove that every

2-connected graph of big path-width and bounded tree-width admits a tree-decomposition

of bounded width and a cascade with linkages that are minimal. We analyze those minimal

linkages and prove that there are essentially only two types of linkage. Then we convert the

two types of linkage into the two families of graphs P and Q. In this process we have to

choose the “right” tree decomposition to deal with special cases like a long cycle. Similar

techniques are used for three-connected and four-connected graphs with high path-width.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

All graphs in this thesis are finite and simple; that is, they have no loops or parallel edges.

Paths and cycles have no “repeated” vertices or edges. A graph H is a minor of a graph

G if we can obtain H by contracting edges of a subgraph of G. An H minor is a minor

isomorphic to H . A tree-decomposition of a graph G is a pair (T,X), where T is a tree

and X is a family (Xt : t ∈ V (T )) such that:

(W1)
⋃
t∈ V ((T )Xt = V (G), and for every edge of G with ends u and v there exists t ∈

V (T ) such that u, v ∈ Xt, and

(W2) if t1, t2, t3 ∈ V (T ) and t2 lies on the path in T between t1 and t3, then Xt1 ∩Xt3 ⊆

Xt2 .

The width of a tree-decomposition (T,X) is max{|Xt| − 1 : t ∈ V (T )}. The tree-width of

a graphG is the smallest width among all tree-decompositions ofG. A path-decomposition

of G is a tree-decomposition (T,X) of G, where T is a path. We will often denote a path-

decomposition as (X1, X2, . . . , Xn), rather than having the constituent sets indexed by the

vertices of a path. The path-width ofG is the smallest width among all path-decompositions

of G. The concept of tree-width and path-width is useful in structural graph theory [19,

22, 23, 24, 25, 27], as well as in theory of algorithms and computation [1, 2, 8, 7, 26].

Robertson and Seymour [21] proved the following:

Theorem 1.1.1. For every planar graph H there exists an integer n = n(H) such that

every graph of tree-width at least n has an H minor.

Robertson and Seymour [20] also proved an analogous result for path-width:
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Theorem 1.1.2. For every forest F , there exists an integer p = p(F ) such that every graph

of path-width at least p has an F minor.

Bienstock, Robertson, Seymour and Thomas [3] gave a simpler proof of Theorem 1.1.2

and improved the value of p to |V (F )| − 1, which is best possible, because Kk has path-

width k − 1 and does not have any forest minor on k + 1 vertices. A yet simpler proof of

Theorem 1.1.2 was found by Diestel [12].

While Geelen, Gerards and Whittle [16] generalized Theorem 1.1.1 to representable

matroids, it is not a priori clear what a version of Theorem 1.1.2 for matroids should be,

because excluding a forest in matroid setting is equivalent to imposing a bound on the num-

ber of elements and has no relevance to path-width. To overcome this, Seymour [11, Open

Problem 2.1] asked if there was a generalization of Theorem 1.1.2 for 2-connected graphs

with forests replaced by two families of graphs. In [9] we answer Seymour’s question in

the affirmative:

Theorem 1.1.3. Let P be a graph with a vertex v such that P\v is a forest, and let Q be an

outerplanar graph. Then there exists a number p = p(P,Q) such that every 2-connected

graph of path-width at least p has a P or Q minor.

Theorem 1.1.3 is a generalization of Theorem 1.1.2. To deduce Theorem 1.1.2 from

Theorem 1.1.3, given a graph G, we may assume that G is connected, because the path-

width of a graph is equal to the maximum path-width of its components. We add one

vertex and make it adjacent to every vertex of G. Then the new graph is 2-connected, and

by Theorem 1.1.3, it has a P or Q minor. By choosing suitable P and Q, we can get an F

minor in G.

Marshall and Wood [17] define g(H) as the minimum number for which there exists

a positive integer p(H) such that every g(H)-connected graph with no H minor has path-

width at most p(H). Then Theorem 1.1.2 implies that g(H) = 0 iff H is a forest. There

is no graph H with g(H) = 1, because path-width of a graph G is the maximum of the
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path-widths of its connected components. Let A be the graph that consists of a cycle

a1a2a3a4a5a6a1 and extra edges a1a3, a3a5, a5a1. Let C3,2 be the graph consisting of two

disjoint triangles. We prove the following, conjectured by Marshall and Wood [17]:

Theorem 1.1.4. A graph H has no K4, K2,3, C3,2 or A minor if and only if g(H) ≤ 2.

Let P ′ be a graph with two distinct vertices u1, u2 such that P ′\{u1, u2} is a forest, Q′

be a graph with a vertex v such that Q′\{v} is an outerplanar graph, and R′ be a tree with a

cycle going through its leaves in order from the leftmost leaf to the rightmost leaf so thatR′

is planar. Then Theorem 1.1.3 can be generalized to 3-connected graphs of high path-width

as follows.

Theorem 1.1.5. There exists a number p = p(P ′, Q′, R′) such that every 3-connected graph

of path-width at least p has a P ′, Q′ or R′ minor.

Let P ′′ be a graph with three distinct vertices u1, u2, u3 such that P ′′\{u1, u2, u3} is a

forest, Q′′ be a graph with two distinct vertices w1, w2 such that Q′′\{w1, w2} is an outer-

planar graph, R′′ be R′ plus a vertex v such that v is adjacent to leaves of the tree in R′,

and S ′′ be a planar graph that consists of an outerplanar graph with a cycle going through

its degree-2 vertices. Then Theorem 1.1.3 can also be generalized to 4-connected graphs

of high path-width as follows.

Theorem 1.1.6. There exists a number p = p(P ′′, Q′′, R′′, S ′′) such that every 4-connected

graph of path-width at least p has a P ′′, Q′′, R′′ or S ′′ minor.

Theorem 1.1.6 implies Theorem 1.1.5, which in turn implies Theorem 1.1.3, but we are

presenting these results separately, because most of the lemmas from the lower connectivity

cases are needed for the cases of higher connectivity.

The rest of the thesis is organized as follows. In the next sections, we introduce several

basic concepts and terminologies needed for the following chapters, prove that the families

of the graphs in the theorems above are necessary, and discuss several related conjectures.
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In Chapter 2, we present our result in [10] that if a graph has a tree-decomposition of width

at mostw, then it has a special tree-decomposition of width at mostw with certain desirable

properties in Theorem 2.1.4. In Chapter 3, we prove Conjecture 1.1.4 follows from Theo-

rem 1.1.3 and use the special tree-decomposition in Chapter 2 to prove Theorem 1.1.3. In

Chapter 4 and Chapter 5, we use the same special tree-decomposition in Chapter 2 to prove

Theorem 1.1.5 and Theorem 1.1.6.

1.2 Basic concepts and terminology

Definition Let h ≥ 0 be an integer. By a binary tree of height h we mean a tree with a

unique vertex r of degree two and all other vertices of degree one or three such that every

vertex of degree one is at distance exactly h from r. Such a tree is unique up to isomorphism

and so we will speak of the binary tree of height h. We denote the binary tree of height

h by CTh and we call r the root of CTh. Each vertex in CTh with distance k from r has

height k. We call the vertices at distance h from r the leaves of CTh. If t belongs to the

unique path in CTh from r to a vertex t′ ∈ V (Th), then we say that t′ is a descendant of t

and that t is an ancestor of t′. If, moreover, t and t′ are adjacent, then we say that t is the

parent of t′ and that t′ is a child of t.

Let Pk be the graph consisting of CTk and a separate vertex that is adjacent to every

leaf of CTk.

Definition Let Q1 be K3. An arbitrary edge of Q1 will be designated as base edge. The

remaining vertex is called leaf. For i ≥ 2 the graph Qi is constructed as follows: Now

assume that Qi−1 has already been defined, and let Q1 and Q2 be two disjoint copies of

Qi−1 with base edges u1v1 and u2v2, respectively. Let T be a copy of K3 with vertex-set

{w1, w2, w} disjoint from Q1 and Q2. The graph Qi is obtained from Q1 ∪ Q2 ∪ T by

identifying u1 with w1, u2 with w2, and v1 and v2 with w. The edge w1w2 will be the base

edge of Qi, and the leaves of Q1 or Q2 will be the leaves of Qi.

A graph is outerplanar if it has a drawing in the plane (without crossings) such that
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every vertex is incident with the unbounded face. A graph is a near-triangulation if it is

drawn in the plane in such a way that every face except possibly the unbounded one is

bounded by a triangle.

Let H and G be graphs. If G has an H minor, then to every vertex u of H there

corresponds a connected subgraph of G, called the node of u.

Definition For any positive integer k, let T be CTk+1 after contracting its root and two

children of the root to one vertex. let P ′k be T plus two distinct vertices each adjacent to

the leaves of T . LetQ′k beQk plus a vertex adjacent to its leaves. LetR′k be T plus a cycle

going through its leaves in order from the leftmost leaf to the right most leaf.

Definition By a ternary tree of height h we mean a tree whose vertices have degree one or

four such that there exists a vertex r of degree four such that every vertex of degree one is

at distance exactly h from a vertex r. For any positive integer k, let P ′′k be a ternary tree of

height k plus three distinct vertices each adjacent to the leaves of the tree. Let Q′′k be Qk

plus two distinct vertices adjacent to its leaves. Let R′′k be a ternary tree of height k plus a

cycle going through its leaves in order from the leaftmost leaf to the rightmost leaf and a

vertex adjacent to every leaf of the ternary tree. Let S ′′k be a planar graph consisting of Qk

and a cycle going through its leaves.

Let T, T ′ be trees. A homeomorphic embedding of T into T ′ is a mapping η : V (T )→

V (T ′) such that

• η is an injection, and

• if tt1, tt2 are edges of T with a common end, and Pi is the unique path in T ′ with

ends η(t) and η(ti), then P1 and P2 are edge-disjoint.

We will write η : T ↪→ T ′ to denote that η is a homeomorphic embedding of T into T ′.

For every integer h ≥ 1 we will need a specific type of tree, which we will denote by

Th. The tree Th is obtained from CTh by subdividing every edge not incident with a vertex
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of degree one exactly once, and adding a new vertex r′ of degree one adjacent to the root r

of CTh. The vertices of Th of degree three will be called major, and all the other vertices

will be called minor. We say that r is the major root of Th and that r′ is the minor root of

Th. Each major vertex at distance 2k from r has height k, and each minor vertex at distance

2k from r′ has height k.

If t belongs to the unique path in Th from r′ to a vertex t′ ∈ V (Th), then we say that t′ is

a descendant of t and that t is an ancestor of t′. If, moreover, t and t′ are adjacent, then we

say that t is the parent of t′ and that t′ is a child of t. Thus every major vertex t has exactly

three minor neighbors. Exactly one of those neighbors is an ancestor of t. The other two

neighbors are descendants of t. We will assume that one of the two descendant neighbors

is designated as the left neighbor and the other as the right neighbor. Let t0, t1, t2 be the

parent, left neighbor and right neighbor of t, respectively. We say that the ordered triple

(t0, t1, t2) is the trinity at t. In case we want to emphasize that the trinity is at t, we use the

notation (t0(t), t1(t), t2(t)).

Let h, h′ be integers. We say that a homeomorphic embedding γ : Th′ ↪→ Th is mono-

tone if

• t is a major vertex of Th′ with trinity (t1, t2, t3), then γ(t2) is the left neighbor of γ(t)

and γ(t3) is the right neighbor of γ(t), and

• the image under γ of the minor root of Th′ is the minor root of Th.

Let G be a graph, let v ∈ V (G) and for i = 1, 2, 3 let Pi be a path in G with ends v and

vi such that the paths P1, P2, P3 are pairwise disjoint, except for v. Assume that at least two

of the paths Pi have length at least one. We say that P1 ∪ P2 ∪ P3 is a tripod with center v

and feet v1, v2, v3.

Let T be a tree. If t1, t2 ∈ V (T ), then by t1Tt2 we denote the unique path in T with

ends t1 and t2 and by T [t1, t2] we denote the vertex-set of t1Tt2.

6



1.3 The necessity of the families

The families of graphs in Theorem 1.1.3, Theorem 1.1.5, and Theorem 1.1.6 are necessary.

To show this, for each R ∈ {P,Q, P ′, Q′, R′, P ′′, Q′′, R′′, S ′′}, let FR be the set of minors

of the graphs having form R. We need to show that FR1 6⊆ FR2 for all distinct R1, R2 ∈

{P,Q}, FR1 6⊆ FR2 for all distinct R1, R2 ∈ {P ′, Q′, R′}, and FR1 6⊆ FR2 for all distinct

R1, R2 ∈ {P ′′, Q′′, R′′, S ′′}.

For Theorem 1.1.3, K2,3 ∈ FP but K2,3 6∈ FQ because Q is outerplanar. Also, C3,2 ∈

FQ but C3,2 6∈ FP because every cycle in P shares a common vertex. Therefore we need

both families of graphs P and Q.

For Theorem 1.1.5, there are two vertices u, v ∈ V (P ′) such that for every cycle C

in P ′, V (C) ∩ {u, v} 6= ∅, and there are some Q′ containing three disjoint cycles, so

FQ′ 6⊆ FP ′ . The graph Q′ is always planar but K3,3 ∈ FP ′ , so FP ′ 6⊆ FQ′ . Similarly, R′ is

planar so FP ′ 6⊆ FR′ , and some R′ has three disjoint cycles as a subgraph, so FR′ 6⊆ FP ′ .

There is no vertex in R′4 whose removal makes the remaining graph outerplanar, but there

is such a vertex in every Q′, so R′4 6∈ FQ′ and therefore, FR′ 6⊆ FQ′ . We will show that

Q′4 is not a minor of any R′. In fact, assume there exists R′ such that Q′4 is a minor of

R′. For every u ∈ V (Q′4), denote the vertex set of the node of u in R′ as N(u). Let the

base edge of Q′4 be v1v2 and v ∈ V (Q′4) be the only vertex adjacent to both v1 and v2. Let

v1v3v4, v2v5v6 be the two K3 in Q′4 such that v4, v6 are leaves of the Q4 in Q′4. Let v7v8v9

be another K3 inQ′4 such that {v7, v8, v9} is disjoint from {v, v1, v2, v3, v4, v5, v6} and v9 is

a leaf of the Q4 inQ′4. Let r ∈ V (Q′4) be the vertex adjacent to the leaves of theQ4 inQ′4.

Let T and C be the tree and the cycle in R′ as in the definition of R′. Because R′\E(C)

is acyclic, there exist a1 ∈ N(v1) ∪ N(v3) ∪ N(v4), a2 ∈ N(v2) ∪ N(v5) ∪ N(v6), and

a3 ∈ N(v7) ∪ N(v8) ∪ N(v9) such that a1, a2, a3 ∈ V (C). Also, there exist b ∈ N(v)

and c ∈ N(r) and paths P1, P2, P3, Q1, Q2, Q3 in R′ such that Pi is from ai to b for all

i ∈ {1, 2, 3}, Qi is from ai to c for all i ∈ {1, 2, 3}, P1, P2, P3 are internally disjoint,

7



Q1, Q2, Q3 are internally disjoint, and Pi and Qj are disjoint for all distinct i, j ∈ {1, 2, 3}.

However, this is impossible because when drawn in a plane, R′\E(C) is planar and lies

only in one of the two faces created by C. Hence, Q′4 6∈ FR′ and that means FQ′ 6⊆ FR′ .

For Theorem 1.1.6, there are three vertices u, v, w ∈ V (P ′′) such that for every cycle C

in P ′′, V (C)∩{u, v, w} 6= ∅, and there are some Q′′, R′′, S ′′ containing four disjoint cycles

as a subgraph, so FQ′′ 6⊆ FP ′′ , FR′′ 6⊆ FP ′′ , and FS′′ 6⊆ FP ′′ . The graph K3,3 is a minor

of some P ′′ but R′′ and S ′′ are planar, so FP ′′ 6⊆ FR′′ and FP ′′ 6⊆ FS′′ . Similarly, K3,3 is

a minor of some Q′′, so FQ′′ 6⊆ FR′′ and FQ′′ 6⊆ FS′′ . The graph K4,4 is a minor of some

P ′′ but is not a minor of any Q′′, so FP ′′ 6⊆ FQ′′ . There are no two vertices in R′′4 whose

removal makes the remaining graph outerplanar, but there are such two vertices in every

Q′′, so R′′4 6∈ FQ′′ and therefore, FR′′ 6⊆ FQ′′ . Similarly, there are no two vertices in S ′′3

whose removal makes the remaining graph outerplanar, but there are such two vertices in

every Q′′, so S ′′3 6∈ FQ′′ and therefore, FS′′ 6⊆ FQ′′ . The graph S ′′7 is not a minor of any R′′.

In fact, assume S ′′7 is a minor of some R′′. Let v ∈ V (R′′) be the vertex that is adjacent to

every leaf of the tree inR′′. LetH be the disjoint union of twoQ′4, thenH is a minor of S ′′7 ,

so H is a minor of R′′. This implies Q′4 is a minor of R′′\v, which has form R′. But from

above Q′4 is not a minor of any R′, so this is a contradiction. Hence, S ′′7 6∈ FR′′ and that

means FS′′ 6⊆ FR′′ . The graph R′′3 is not a minor of any S ′′. In fact, assume R′′3 is a minor

of some S ′′. Let C be the cycle as in the definition of S ′′. Let u be the root of the tree inR′′3

and v be the vertex that is adjacent to every leaf of the tree in R′′3. Let H1, H2, H3 be three

graphs isomorphic to K4 and let H be the disjoint union of H1, H2, H3. Then R′′3\{u, v}

has an H minor. For x ∈ V (R′′3), let N(x) be the vertex set of the node of x in S ′′. Because

S ′′\E(C) is outerplanar, there exist ri ∈ V (Hi) and ai ∈ N(ri) for all i ∈ {1, 2, 3} such

that ai ∈ V (C) for all i ∈ {1, 2, 3}. Also, there exist b ∈ N(u) and c ∈ N(v) and paths

P1, P2, P3, Q1, Q2, Q3 such that Pi is from ai to b for all i ∈ {1, 2, 3}, Qi is from ai to

c for all i ∈ {1, 2, 3}, P1, P2, P3 are internally disjoint, Q1, Q2, Q3 are internally disjoint,

and Pi and Qj are disjoint for distinct i, j ∈ {1, 2, 3}. However, this is impossible because
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S ′′\E(C) is planar and lies only in one of the two faces created by C. Hence, R′′3 6∈ FS′′

and that means FR′′ 6⊆ FS′′ .

1.4 Discussion

A family F of graphs is closed under minors if for every graph G ∈ F , every graph

isomorphic to a minor of G is also in F . A family of graphs H is called a list of excluded

minors of a family F of graphs if for every graph G we have that G ∈ F if and only if G

does not have a minor isomorphic to any graph in H. It is easy to see that every family of

graphs that is closed under minors can be characterized by a list of excluded minors. The

Graph Minor Theorem of Robertson and Seymour [27] states that this list is finite.

Theorem 1.4.1. Every family of graphs that is closed under minors can be characterized

by a finite list of excluded minors.

Define Tl = {H : g(H) ≤ l}, where the function g is defined prior to Theorem 1.1.4. It

is easy to see that Tl is closed under minors, so by the Graph Minor Theorem, we can char-

acterize these classes of graphs by a finite list of excluded minors. From Theorem 1.1.2,

the only excluded minor of T0 and T1 is K3. From Theorem 1.1.4, the list of excluded mi-

nors for T2 is {K4, K2,3, C3,2, A}. We can also characterize T3 and T4 by excluded minors.

For T3, the list of these minors will be the union of the three lists of excluded minors of

FP ′ , FQ′ , and FR′ . The excluded minors of the graphs in FP ′ are the excluded minors of the

class of graphs with minimum feedback vertex set size at most 2. In [6] there is a complete

list of these minors. The graphs in FQ′ can be characterized by the minors that do not have

a vertex whose removal makes them outerplanar. We have found over 35 of such minors.

The list of excluded minors of FR′ is not known yet.

One related question is the general problem of Theorem 1.1.3 for a-connected graphs,

where a ≥ 5. For this, we are interested in finding a list of families of graphs that are

a-connected and have large path-width when k is large, like (Pk,Qk) in Theorem 3.5.1. If
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we know this, then we can determine H ∈ Ta or not for any graph H . As shown above,

the families of graphs for the cases a ≤ 4 are based on the binary tree and the outerplanar

graph, but this might be not true for general a. Also, there is no planar graph in the list when

a ≥ 6, so we cannot use Theorem 1.1.1 to limit the tree-width of the graph G anymore.

For this, one can expect to use other techniques such as in [4] to deal with graphs of large

tree-width.

The authors in [5] proved that for any positive integers k, w, a (a ≥ 3), there exist

n = n(k, w) and c = c(a) such that every c-connected graph G of tree-width at most w

and of order at least n contains Ka,k as a minor. Their proof used c(a) = 2a+ 1 for a = 3,

and c(a) = 264a + 1 for a ≥ 4. The first part of their proof was to find a homeomorphic

embedding of a path into tree T of a chosen tree decomposition (T,X) of G, such that the

underlying subgraph of G formed by the union of bags on this path satisfies some special

conditions. This is similar to what we did in our proof of Theorem 1.1.3, but we relied on a

path-decomposition and can get a binary tree instead of a path. Therefore, we can get more

structure of the underlying subgraph. The authors of [5] asked if c(a) can be reduced to

2a+ 1:

Conjecture 1. For any positive integers a, k, there exists a number N(a, k) such that every

(2a+ 1)-connected graph G on at least N(a, k) vertices contains Ka,k as a minor.

A similar problem but with extra conditions on the tree-width and path-width might be

related to our results:

Conjecture 2. For any positive integers k, w, a (a ≥ 4), there exists p = p(k, w, a) such

that every (2a + 1)-connected graph of tree-width at most w and path-width at least p

contains Ka,k as a minor.

The conditions will help us get a homeomorphic embedding as in our proof for Theo-

rem 1.1.3. If we can handle Conjecture 2, again we can use the techniques as in [4] to deal

with graphs of large tree-width or small path-width to tackle Conjecture 1. The number
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c(a) cannot be smaller than 2a+1 in Conjecture 1, because in [5] the authors show an infi-

nite sequence of 2a-connected graphs without a Ka,2a+1-minor. For Conjecture 2, it is not

known c(a) can be smaller than 2a+1 or not. If Conjecture 2 is also true when we remove

the tree-width condition, then g(Ka,k) ≤ 2a + 1. We have g(K1,k) = 0 because K1,k is a

tree. From a result of Ding [14], we can imply g(K2,k) = 3. So another related question is

whether 2a+ 1 is the right bound for g(Ka,k)? We made the following conjecture:

Conjecture 3. For every integers a ≥ 1 and k ≥ a, g(Ka,k) = a+ 1.

We have g(K3) = 2. From above and a result of Dirac [15], we have g(K4) = 3.

It is known [18] that every large enough (a + 1)-connected graph has a Ka minor, so

g(Ka) ≤ a + 1. For a ≥ 5, we can also construct a large path-width a-connected graph

such that it has a − 5 vertices whose removal make it planar. This means g(Ka) > a for

a ≥ 5. So we have g(Ka) = a+ 1 for every a ≥ 5. Define τ(H) as the size of a minimum

feedback vertex set of the graph H . Then it is easy to see that g(H) ≥ τ(H) + 1. Then we

are also interested in the following question:

Open problem 1. Is there an upper bound on g(H) that is a function of τ(H)?
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CHAPTER 2

A SPECIAL TREE DECOMPOSITION

The chapter is organized as follows. In the next section we review known results about

tree-decompositions and state our main result, Theorem 2.1.4. In Section 2.2 we introduce

a linear quasi-order on the class of finite trees and prove a key lemma—Lemma 2.2.5. In

Section 2.3 we prove Theorem 2.1.4, which we restate as Theorem 2.3.8.

2.1 Linked tree-decompositions

In this section we review properties of tree-decompositions established in [19, 28], and

state our main result. The proof of the following easy lemma can be found, for instance, in

[28].

Lemma 2.1.1. Let (T, Y ) be a tree-decomposition of a graph G, and let H be a connected

subgraph of G such that V (H) ∩ Yt1 6= ∅ 6= V (H) ∩ Yt2 , where t1, t2 ∈ V (T ). Then

V (H) ∩ Yt 6= ∅ for every t ∈ V (T ) on the path between t1 and t2 in T .

A tree-decomposition (T, Y ) of a graph G is said to be linked if

(W3) for every two vertices t1, t2 of T and every positive integer k, either there are k

disjoint paths inG between Yt1 and Yt2 , or there is a vertex t of T on the path between

t1 and t2 such that |Yt| < k.

It is worth noting that, by Lemma 2.1.1, the two alternatives in (W3) are mutually exclusive.

The following is proved in [28].

Lemma 2.1.2. If a graph G admits a tree-decomposition of width at most w, where w is

some integer, then G admits a linked tree-decomposition of width at most w.
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Let (T, Y ) be a tree-decomposition of a graph G, let t0 ∈ V (T ), and let B be a compo-

nent of T\t0. We say that a vertex v ∈ Yt0 is B-tied if v ∈ Yt for some t ∈ V (B). We say

that a path P in G is B-confined if |V (P )| ≥ 3 and every internal vertex of P belongs to⋃
t∈V (B)

Yt − Yt0 . We wish to consider the following three properties of (T, Y ):

(W4) if t, t′ are distinct vertices of T , then Yt 6= Yt′ ,

(W5) if t0 ∈ V (T ) and B is a component of T\t0, then
⋃

t∈V (B)

Yt − Yt0 6= ∅,

(W6) if t0 ∈ V (T ), B is a component of T\t0, and u, v are B-tied vertices in Yt0 , then

there is a B-confined path in G between u and v.

The following strengthening of Lemma 2.1.2 is proved in [19].

Lemma 2.1.3. If a graph G has a tree-decomposition of width at most w, where w is some

integer, then it has a tree-decomposition of width at most w satisfying (W1)–(W6).

We need one more condition, which we now introduce. Let T be a tree. A triad in T is

a triple t1, t2, t3 of vertices of T such that there exists a vertex t of T , called the center, such

that t1, t2, t3 belong to different components of T\t. Let (T,W ) be a tree-decomposition

of a graph G, and let t1, t2, t3 be a triad in T with center t0. The torso of (T,W ) at

t1, t2, t3 is the subgraph of G induced by the set
⋃
Wt, the union taken over all vertices

t ∈ V (T ) such that either t ∈ {t1, t2, t3}, or for all i ∈ {1, 2, 3}, the vertex t belongs

to the component of T\ti containing t0. We say that the triad t1, t2, t3 is W -separable if,

letting X = Wt1 ∩Wt2 ∩Wt3 , the graph obtained from the torso of (T,W ) at t1, t2, t3 by

deleting X can be partitioned into three disjoint non-null graphs H1, H2, H3 in such a way

that for all distinct i, j ∈ {1, 2, 3} and all t ∈ T [tj, t0], |V (Hi) ∩Wt| ≥ |V (Hi) ∩Wtj | =

|Wtj − X|/2 ≥ 1. (Let us remark that this condition implies that |Wt1| = |Wt2| = |Wt3|

and V (Hi) ∩Wti = ∅ for i = 1, 2, 3.) The last property of a tree-decomposition (T,W )

that we wish to consider is
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(W7) if t1, t2, t3 is a W–separable triad in T with center t, then there exists an integer

i ∈ {1, 2, 3} with Wti ∩Wt − (Wt1 ∩Wt2 ∩Wt3) 6= ∅.

The following is our main result.

Theorem 2.1.4. If a graph G has a tree-decomposition of width at most w, where w is

some integer, then it has a tree-decomposition of width at most w satisfying (W1)–(W7).

2.2 A Quasi-order on trees

A quasi-ordered set is a pair (Q,≤), where Q is a set and ≤ is a quasi-order; that is, a

reflexive and transitive relation on Q. If q, q′ ∈ Q we define q < q′ to mean that q ≤ q′ and

q′ 6≤ q. We say that q, q′ are ≤-equivalent if q ≤ q′ ≤ q. We say that (Q,≤) is a linear

quasi-order if for every two elements q, q′ ∈ Q either q ≤ q′ or q′ ≤ q or both. Let (Q,≤)

be a linear quasi-order. If A,B ⊆ Q we say thatB ≤-dominates A if the elements of A can

be listed as a1 ≥ a2 ≥ · · · ≥ ak and the elements of B can be listed as b1 ≥ b2 ≥ · · · ≥ bl,

and there exists an integer p with 1 ≤ p ≤ min{k, l} such that ai ≤ bi ≤ ai for all

i = 1, 2, . . . , p, and either p < min{k, l} and ap+1 < bp+1, or p = k and k ≤ l.

Lemma 2.2.1. If (Q,≤) is a linear quasi-order, then ≤-domination is a linear quasi-order

on the set of subsets of Q.

Proof. It is obvious that ≤-domination is reflexive. Assume that B ≤-dominates A and C

≤-dominates B. Assume that the elements of A can be listed as a1 ≥ a2 ≥ · · · ≥ ak, the

elements of B can be listed as b1 ≥ b2 ≥ · · · ≥ bl, and the elements of C can be listed as

c1 ≥ c2 ≥ · · · ≥ cm. By definition, there exists an integer p1 with 1 ≤ p1 ≤ min{k, l} such

that ai ≤ bi ≤ ai for all i = 1, 2, . . . , p1, and either p1 < min{k, l} and ap1+1 < bp1+1, or

p1 = k ≤ l; and there exists an integer p2 with 1 ≤ p2 ≤ min{l,m} such that bi ≤ ci ≤ bi

for all i = 1, 2, . . . , p2, and either p2 < min{l,m} and bp2+1 < cp2+1, or p2 = l ≤ m.

Let p = min{p1, p2}. Then ai ≤ ci ≤ ai for all i = 1, 2, . . . , p. If either p1 < min{k, l}

and ap1+1 < bp1+1, or p2 < min{l,m} and bp2+1 < cp2+1, then p < min{k,m} and
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ap+1 < cp+1. If p1 = k ≤ l and p2 = l ≤ m, then p = k ≤ m. Therefore, C ≤-dominates

A, and so ≤-domination is transitive.

Now let A,B be as above, and let p be the maximum integer such that p ≤ min{k, l}

and ai ≤ bi ≤ ai for all i = 1, 2, . . . , p. Then if p < min{k, l}, then A ≤-dominates B if

ap+1 > bp+1 and B ≤-dominates A if ap+1 < bp+1. If p = min{k, l} then A ≤-dominates

B if k ≥ l and B ≤-dominates A if k ≤ l. Hence, ≤-domination is linear.

We say that B strictly ≤-dominates A if B ≤-dominates A in such a way that the

numberings and integer p can be chosen in such a way that either p < min{k, l}, or p = k

and k < l.

Lemma 2.2.2. Let (Q,≤) be a linear quasi-order, let A,B ⊆ Q, and let B ≤-dominate A.

Then B strictly ≤-dominates A if and only if A does not ≤-dominate B.

Proof. Let p be as in the definition of B ≤-dominates A. Then p < min{k, l} and ap+1 <

bp+1, or p = k ≤ l. Assume B strictly ≤-dominates A. If p < min{k, l} then ap+1 < bp+1,

soA does not≤-dominateB. If p = k < l thenA also does not≤-dominateB. Conversely,

if A does not ≤-dominate B, then p < min{k, l} or k < l, so B strictly ≤-dominates

A.

LetG be a graph and let P be a subgraph ofG. By a P -bridge ofGwe mean a subgraph

J of G such that either

• J is isomorphic to the complete graph on two vertices with V (J) ⊆ V (P ) and

E(J) ∩ E(P ) = ∅, or

• J consists of a component of G−V (P ) together with all edges from that component

to P .

We now define a linear quasi-order ≤ on the class of finite trees as follows. Let n ≥ 1

be an integer, and suppose that T ≤ T ′ has been defined for all trees T on fewer than n

vertices. Let T be a tree on n vertices, and let T ′ be an arbitrary tree. We define T ≤ T ′ if
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either |V (T )| < |V (T ′)|, or |V (T )| = |V (T ′)| and for every maximal path P ′ of T ′ there

exists a maximal path P of T such that the set of P ′-bridges of T ′ ≤-dominates the set of

P -bridges of T . It follows from Lemma 2.2.3 below that ≤ is indeed a linear quasi-order;

in particular, it is well-defined.

If T, T ′ are trees, P is a path in T and P ′ is a path in T ′ we define (T, P ) � (T ′, P ′) if

either |V (T )| < |V (T ′)|, or |V (T )| = |V (T ′)| and the set of P ′-bridges of T ′ ≤-dominates

the set of P -bridges of T .

Lemma 2.2.3. (i) For every tree T there exists a maximal path P (T ) in T such that

(T, P (T )) � (T, P ) for every maximal path P in T .

(ii) For every two trees T, T ′, we have T ≤ T ′ if and only if (T, P (T )) � (T ′, P (T ′)).

(iii) The ordering ≤ is a linear quasi-order on the class of finite trees.

Proof. We prove all three statements simultaneously by induction. Let n ≥ 1 be an integer,

assume inductively that all three statements have been proven for trees on fewer than n

vertices, and let T be a tree on n vertices.

(i) Statement (i) clearly holds for one-vertex trees, and so we may assume that n ≥ 2.

Let B be the set of all P -bridges of T for all maximal paths P of T . Then every member

of B has fewer than n vertices, and hence B is a linear quasi-order by ≤ by the induction

hypothesis applied to (iii). By Lemma 2.2.1 the set of subsets of B is linearly quasi-ordered

by ≤-domination. It follows that there exists a maximal path P (T ) in T such that the set

of P (T )-bridges of T is minimal under ≤-domination.

(ii) The statement is obvious when |V (T )| 6= |V (T ′)|, so assume n = |V (T )| = |V (T ′)|,

and let B be the set of all P -bridges of T for all maximal paths P of T and the set of all

P ′-bridges of T ′ for all maximal paths P ′ of T ′. Then as in (i) the subsets of B are linearly

quasi-ordered by ≤-domination. If T ≤ T ′, then by definition there exists a maximal path

P of T such that (T, P ) � (T ′, P (T ′)). Hence (T, P (T ))) � (T ′, P (T ′)) follows from (i).

If (T, P (T ))) � (T ′, P (T ′)), then by (i) (T, P (T ))) � (T ′, P ′) for every maximal path P ′

in T ′, so T ≤ T ′.
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(iii) Let T and T ′ be two trees. We may assume that n = |V (T )| = |V (T ′)|. Let B

be as in (ii); then subsets of B are linearly quasi-ordered by ≤-domination. Then either

(T, P (T )) � (T ′, P (T ′)) or (T ′, P (T ′)) � (T, P (T )), and so by (ii) ≤ is linear.

For a tree T , the path P (T ) from Lemma 2.2.3(i) will be called a spine of T . For later

application we need the following lemma.

Lemma 2.2.4. Let T, T ′ be trees on the same number of vertices, let P ′ be a spine of T ′,

and let P be a path in T . If the set of P ′-bridges of T ′ strictly ≤-dominates the set of

P -bridges of T , then T < T ′.

Proof. We have (T, P ) � (T ′, P ′) and (T ′, P ′) 6� (T, P ) by Lemma 2.2.2. Let P1 be a

maximal path that contains P ; then (T, P1) � (T, P ). Therefore, (T, P1) � (T ′, P ′) and

(T ′, P ′) 6� (T, P1). By Lemma 2.2.3(i), (T, P (T )) � (T, P1) � (T ′, P ′) and (T ′, P ′) 6�

(T, P (T )). By Lemma 2.2.3(ii), T ≤ T ′ and T ′ 6≤ T . Therefore, T < T ′.

By a rank we mean a class of ≤-equivalent trees. If r is a rank we say that T has rank

r or that the rank of T is r if T ∈ r. The class of all ranks will be denoted byR.

Let T be a tree, and let t be a vertex of T . By a spine-decomposition of T relative to t

we mean a sequence (T0, P0, T1, P1, . . . , Tl, Pl) such that

(i) T0 = T ,

(ii) for i = 0, 1, . . . , l, Pi is a spine of Ti, and

(iii) for i = 1, 2, . . . , l, t /∈ V (Pi−1) and Ti is the Pi−1-bridge of Ti−1 containing t.

Lemma 2.2.5. Let T be a tree, let t be a vertex of T of degree three with neighbors t′1, t
′
2, t
′
3,

and let (T0, P0, T1, P1, . . . , Tl, Pl) be a spine-decomposition of T relative to t with t ∈

V (Pl). Then exactly two of t′1, t
′
2, t
′
3 belong to V (Pl), say t′1 and t′2. Let r3, r′3 be adjacent

vertices of T such that r3, r′3, t
′
3, t occur on a path of T in the order listed. Thus possibly

t′3 = r′3, but t′3 6= r3. Let T ′ be obtained from T by subdividing the edge r3r′3 twice (let
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r′′3 , r
′′′
3 be the new vertices so that r′3, r

′′
3 , r
′′′
3 , r3 occur on a path of T ′ in the order listed),

deleting the edge tt′1, contracting the edges tt′2 and tt′3 and adding an edge joining t′1 and

r′′′3 . Then T ′ has strictly smaller rank than T .

Proof. Let T ′0 = T ′ and for i = 1, 2, . . . , l, let T ′i be the Pi−1-bridge of T ′i−1 containing

r′′′3 . Let P ′ be the unique maximal path in T ′ with V (Pl) − {t, t′2} ∪ {r′3} ⊆ V (P ′).

From the definition of a spine-decomposition and the fact that t′3 6∈ V (Pl) we deduce that

r3 ∈ V (Ti) for all i = 0, 1, . . . , l. It follows that r3 ∈ V (T ′i ) and |V (Ti)| = |V (T ′i )| for

all i = 0, 1, . . . , l. The Pl-bridge of Tl that contains r3 is replaced by P ′-bridges of T ′l

with smaller cardinalities. Other Pl-bridges of Tl are unchanged in T ′. Therefore, the set

of Pl-bridges of Tl strictly ≤-dominates the set of P ′-bridges of T ′l , and hence T ′l < Tl by

Lemma 2.2.4. This implies, by induction on l − i using Lemma 2.2.4, that T ′i < Ti for all

i = 0, 1, . . . , l; that is, T ′ has smaller rank than T .

2.3 A theorem about tree-decompositions

Let (T, Y ) be a tree-decomposition of a graph G, let n be an integer, and let r be a rank.

By an (n, r)–cell in (T, Y ) we mean any component of the restriction of T to {t ∈ V (T ) :

|Yt| ≥ n} that has rank at least r. Let us remark that if K is an (n, r)-cell in (T, Y ) and

r ≥ r′, then K is an (n, r′)-cell as well. The size of a tree-decomposition (T, Y ) is the

family of numbers

(1) (an,r : n ≥ 0, r ∈ R),

where an,r is the number of (n, r)-cells in (T, Y ). Sizes are ordered lexicographically; that

is, if

(2) (bn,r : n ≥ 0, r ∈ R)
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is the size of another tree-decomposition (R,Z) of the graph G, we say that (2) is smaller

than (1) if there are an integer n ≥ 0 and a rank r ∈ R such that an,r > bn,r and an′,r′ =

bn′,r′ whenever either n′ > n, or n′ = n and r′ > r.

Lemma 2.3.1. The relation “to be smaller than” is a well–ordering on the set of sizes of

tree–decompositions of G.

Proof. Since this ordering is clearly linear, it is enough to show that it is well–founded.

Suppose for a contradiction that {(a(i)n,r : n ≥ 0, r ∈ R)}
∞
i=1 is a strictly decreasing se-

quence of sizes, and for i = 1, 2, . . . , let ni, ri be such that a(i)ni,ri > a
(i+1)
ni,ri and a(i)n,r = a

(i+1)
n,r

for (n, r) such that either n > ni, or n = ni and r > ri. Since a(1)n,r = 0 for all r ∈ R and

all n > |V (G)|, we may assume (by taking a suitable subsequence) that n1 = n2 = · · · ,

and that r1 ≤ r2 ≤ r3 ≤ · · · . Since clearly a(i)n,r ≥ a
(i)
n,r′ for all n ≥ 0, all r ≤ r′ and all

i = 1, 2, . . ., we have

a(1)n1,r1
> a(2)n1,r1

≥ a(2)n2,r2
> a(3)n2,r2

≥ a(3)n3,r3
> · · · ,

a contradiction.

We say that a tree-decomposition (T,W ) of a graph G is minimal if there is no tree-de-

composition of G of smaller size.

Lemma 2.3.2. Let w be an integer, and let G be a graph of tree-width at most w. Then

a minimal tree-decomposition of G exists, and every minimal tree-decomposition of G has

width at most w.

Proof. The existence of a minimal tree-decomposition follows from Lemma 2.3.1. If G

has a tree-decomposition of width at most w, then every minimal tree-decomposition has

width at most w, as desired.

Theorem 2.3.3. Let (T,W ) be a minimal tree-decomposition of a graph G. Then (T,W )

satisfies (W1)–(W6).
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Proof. That (T,W ) satisfies (W3) is shown in [28], and that it satisfies (W4), (W5) and

(W6) is shown in [19]. Let us remark that [19] and [28] use a slightly different definition

of minimality, but the proofs are adequate, because a minimal tree-decomposition in our

sense is minimal in the sense of [19] and [28] as well.

Lemma 2.3.4. Let (T,W ) be a minimal tree-decomposition of a graph G. Then for every

edge tt′ ∈ E(T ) either Wt ⊆ Wt′ or Wt′ ⊆ Wt.

Proof. Assume for a contradiction that there exists an edge tt′ ∈ E(T ) such that Wt 6⊆ Wt′

and Wt′ 6⊆ Wt. Let R be obtained from T by subdividing the edge tt′ and let t′′ be the new

vertex. Let Yt′′ = Wt ∩Wt′ and Yr = Wr for all r ∈ V (T ), and let Y = (Yr : r ∈ V (R)).

Then (R, Y ) is a tree-decomposition of G with smaller size than (T,W ), contrary to the

minimality of (T,W ).

Lemma 2.3.5. Let (T,W ) be a minimal tree-decomposition of a graphG, let t ∈ V (T ), let

X ⊆ Wt, letB be a component of T\t, let t′ be the neighbor of t inB, let Y =
⋃
r∈V (B)Wr,

and let H be the subgraph of G induced by Y ∪Wt. If H\X = H1 ∪H2, where V (H1) ∩

V (H2) = ∅ and both of V (H1), V (H2) intersect Wt, then either Wt′ −X ⊆ Wt ∩ V (H1)

or Wt′ −X ⊆ Wt ∩ V (H2).

Proof. We first prove the following claim.

Claim 2.3.5.1. Either Wt ∩Wt′ −X ⊆ V (H1) or Wt ∩Wt′ −X ⊆ V (H2).

To prove the claim suppose for a contradiction that there exist vertices v1 ∈ Wt ∩Wt′ ∩

V (H1) and v2 ∈ Wt∩Wt′∩V (H2). Thus both v1 and v2 areB-tied, and so by (W6), which

(T,W ) satisfies by Theorem 2.3.3, there exists a B-confined path Q with ends v1 and v2.

SinceQ isB-confined, it is a subgraph ofH\X , contrary to the fact that V (H1)∩V (H2) =

∅ and H1 ∪H2 = H\X . This proves Claim 2.3.5.1.
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Since both of V (H1), V (H2) intersect Wt, Claim 2.3.5.1 implies that Wt 6⊆ Wt′ , and

hence Wt′ ⊆ Wt by Lemma 2.3.4. By another application of Claim 2.3.5.1 we deduce that

either Wt′ −X ⊆ Wt ∩ V (H1) or Wt′ −X ⊆ Wt ∩ V (H2), as desired.

Lemma 2.3.6. Let k ≥ 1 be an integer, let (T,W ) be a minimal tree-decomposition of

a graph G, let t1, t2 ∈ V (T ), let X = Wt1 ∩ Wt2 , let H be the subgraph of G induced

by
⋃
Wt, the union taken over all vertices t ∈ V (T ) such that either t ∈ {t1, t2}, or for

i = 1, 2 the vertex t belongs to the component of T\ti containing t3−i, letH\X = H1∪H2,

where V (H1) ∩ V (H2) = ∅, and assume that |Wti ∩ V (Hj)| = k and |Wt ∩ V (Hi)| ≥ k

for all i, j ∈ {1, 2} and all t ∈ T [t1, t2]. Let t, t′ be two adjacent vertices on the path

of T between t1 and t2. Then there exists an integer i ∈ {1, 2} such that Wt ∩ V (Hi) =

Wt′ ∩ V (Hi) and this set has cardinality k.

Proof. We begin with the following claim.

Claim 2.3.6.1. For every t ∈ T [t1, t2] either |Wt ∩ V (H1)| = k or |Wt ∩ V (H2)| = k.

To prove the claim let R be the subtree of T induced by vertices r ∈ V (T ) such that either

r ∈ {t1, t2} or r belongs to the component of T\{t1, t2} that contains neighbors of both t1

and t2, let R1, R2 be two isomorphic copies of R, and for r ∈ V (R) let r1 and r2 denote the

copies of r inR1 andR2, respectively. Assume for a contradiction that there is t0 ∈ T [t1, t2]

such that |Wt0 ∩ V (Hi)| > k for all i ∈ {1, 2}, and choose such a vertex with t0 ∈ V (R)

and |Wt0|maximum. We construct a new tree-decomposition (T ′,W ′) as follows. The tree

T ′ is obtained from the disjoint union of T\(V (R) − {t1, t2}), R1 and R2 by identifying

t1 with (t1)1, (t2)1 with (t1)2 and (t2)2 with t2 (here (t1)2 denotes the copy of t1 in R2 and

similarly for the other three quantities). The family W ′ = (W ′
t : t ∈ V (T ′)) is defined as
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follows:

W ′
t =



Wt if t ∈ V (T )− V (R)

(Wr ∩ V (H1)) ∪ (Wt1 ∩ V (H2) ∪X if t = r1 for r ∈ T [t1, t2]

(Wr ∩ V (H2)) ∪ (Wt2 ∩ V (H1) ∪X if t = r2 for r ∈ T [t1, t2]

Wr ∩ V (H1) if t = r1 for r ∈ V (R)− T [t1, t2]

Wr ∩ V (H2) if t = r2 for r ∈ V (R)− T [t1, t2]

Please note that the value of W ′
t is the same for t = (t2)1 and t = (t1)2, and hence W ′

is well-defined. Since no edge of G has one end in V (H1) and the other end in V (H2), it

follows that (T ′,W ′) is a tree-decomposition of G.

We claim that the size of (T ′,W ′) is smaller than the size of (T,W ). Indeed, let n0 =

|Wt0 |, and let Z = {t ∈ V (T ′) : |W ′
t | ≥ n0}. Then n0 > 2k + |X|. We define a mapping

f : Z → V (T ) by f(t) = t for t ∈ Z−V (R1)−V (R2), f(r1) = r for r ∈ V (R) such that

r1 ∈ Z and f(r2) = r for r ∈ V (R) such that r2 ∈ Z. We remark that the vertex obtained

by identifying (t2)1 with (t1)2 does not belong to Z, and hence there is no ambiguity. Then

Z and f have the following properties:

• |Wf(t)| ≥ |W ′
t | for every t ∈ Z,

• for r ∈ V (R), at most one of r1, r2 belongs to Z, and

• (t0)1, (t0)2 6∈ Z

These properties follow from the assumptions that |Wti ∩V (Hj)| = k and |Wt∩V (Hi)| ≥

k for all i, j ∈ {1, 2} and all t ∈ T [t1, t2]. (To see the second property assume for a

contradiction that for some r ∈ V (R) both r1 and r2 belong to Z. Then n0 = |Wt0| ≥

|Wf(ri)| ≥ |Wri | ≥ n0, by the maximality of |Wt0| and the first property, and so equality

holds throughout, contrary to the construction.) It follows from the first two properties

that f maps injectively (n, r)-cells in (T ′,W ′) to (n, r)-cells in (T,W ) for all n ≥ n0 and
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all ranks r. On the other hand, the third property implies that, letting r1 denote the rank

of one-vertex trees, no (n0, r1)-cell in (T ′,W ′) is mapped onto the (n0, r1)-cell in (T,W )

with vertex-set {t0}. Thus the size of (T ′,W ′) is smaller than the size of (T,W ), contrary

to the minimality of (T,W ). This proves Claim 2.3.6.1.

Now let t, t′ ∈ T [t1, t2] be adjacent. By Lemma 2.3.4 we may assume that Wt ⊆ Wt′ .

Then Wt ∩ V (H1) ⊆ Wt′ ∩ V (H1) and Wt ∩ V (H2) ⊆ Wt′ ∩ V (H2). By Claim 2.3.6.1 we

may assume that |Wt′∩V (H1)| = k. Given that |Wt∩V (H1)| ≥ k we haveWt∩V (H1) =

Wt′ ∩ V (H1) and this set has cardinality k, as desired.

Lemma 2.3.7. Let (T,W ) be a minimal tree-decomposition of a graph G, let t1, t2, t3

be a W -separable triad in T with center t0, and let X,H,H1, H2 and H3 be as in the

definition of W -separable triad. Let k = |Wt1 −X|/2 and for i = 1, 2, 3 let t′i denote the

neighbor of t0 in the component of T\t0 containing ti. Then for all distinct i, j ∈ {1, 2, 3},

V (Hi) ∩Wt′j
= V (Hi) ∩Wt0 , and this set has cardinality k.

Proof. Let X3 =
⋃
Wt, the union taken over all t ∈ V (T ) that do not belong to the

component of T\t3 containing t0. Since |Wt0 ∩ V (H1)| ≥ k and |Wt0 ∩ V (H2)| ≥ k by

the definition of W -separable triad, by Lemma 2.3.6 applied to t1, t2, H3 and the subgraph

of G induced by V (H1) ∪ V (H2) ∪ X3 we deduce that V (H3) ∩Wt0 = V (H3) ∩Wt′1
=

V (H3) ∩ Wt′2
, and this set has cardinality k. Similarly we deduce that V (H2) ∩ Wt0 =

V (H2)∩Wt′1
= V (H2)∩Wt′3

and V (H1)∩Wt0 = V (H1)∩Wt′2
= V (H1)∩Wt′3

, and that

the latter two sets also have cardinality k.

We are finally ready to prove Theorem 2.1.4, which, by Lemma 2.3.2 is implied by the

following theorem.

Theorem 2.3.8. Let (T,W ) be a minimal tree-decomposition of a graph G. Then (T,W )

satisfies (W1)–(W7).

Proof. That (T,W ) satisfies (W1)–(W6) follows from Theorem 2.3.3. Thus it remains to

show that (T,W ) satisfies (W7). Suppose for a contradiction that (T,W ) does not satisfy
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(W7), and let t1, t2, t2 be a W -separable triad in T with center t0 such that Wti ∩Wt0 ⊆ X

for every i = 1, 2, 3, where X = Wt1 ∩Wt2 ∩Wt3 . Let H,H1, H2 and H3 be as in the

definition of W -separable triad, and for i ∈ {1, 2, 3} let t′i denote the neighbor of t0 in the

component of T\t0 containing ti.

Let n := |Wt1|, let k := |Wt1 − X|/2, let r1 denote the rank of 1-vertex trees, and let

T0 denote the (n, r1)-cell containing t0. By the definition of W -separable triad we have

|Wt′i
| ≥ n for all i ∈ {1, 2, 3}, and hence the degree of t0 in T0 is at least three and by

Lemmas 2.3.7 and 2.3.5 it is at most three.

Let (T0, P0, T1, P1, . . . , Tl, Pl) be a spine-decomposition of T0 relative to t0 with t0 ∈

V (Pl). Since Pl is a maximal path in Tl we may assume that t′1, t
′
2 ∈ V (Pl) and t′3 6∈ V (Pl).

It follows from Lemma 2.3.7 that Wt3 ∩Wt′3
= X . By Lemma 2.3.6 applied to t3 and t′3

and t′3 and its neighbor in T [t3, t′3] we deduce that there exists a vertex r3 ∈ T [t3, t′3]−{t′3}

such that either V (H1) ∩Wt′3
= V (H1) ∩Wr for every r ∈ T [r3, t′3], or V (H2) ∩Wt′3

=

V (H2) ∩Wr for every r ∈ T [r3, t′3]. Without loss of generality we may assume the latter.

We may choose r3 to be as close to t3 as possible. The fact that Wt3 ∩Wt′3
= X implies

that r3 6= t3. By another application of Lemma 2.3.6, this time to t3, t′3, r3 and the neighbor

of r3 in T [r3, t3], we deduce that |V (H1) ∩Wr3| = |V (H2) ∩Wr3| = k.

Let r′3 be the neighbor of r3 in T [r3, t0] and let the tree T ′′ be defined as follows: for

every component B of T\T [t0, r′3] not containing t1, t2 or t3 let r(B)r′(B) denote the edge

connecting B to T [t0, r′3], where r(B) ∈ V (B) and r′(B) ∈ T [t0, r
′
3]. By Lemma 2.3.5

there exists an integer i ∈ {1, 2, 3} such that Wr(B) ⊆ Wr′(B) ∩ V (Hi). Let us mention in

passing that this, the choice of r2 and Lemma 2.3.7 imply that for every such component

B, every (n, r1)-cell is either a subgraph ofB or is disjoint fromB. The tree T ′′ is obtained

from T by, for every such component B for which either i = 2, or i = 3 and r′(B) = t0,

deleting the edge r(B)r′(B) and adding the edge t′1r(B); and for every such component

B for which i = 1 and r′(B) = t0 deleting the edge r(B)r′(B) and adding the edge

t′2r(B). Since Wr′(B)∩ (V (H2)∪V (H3)) ⊆ Wt′1
by the choice of r3 and Lemma 2.3.7; and
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Wr′(B) ∩ V (H1) ⊆ Wt′2
by Lemma 2.3.7 it follows that (T ′′,W ) is a tree-decomposition of

G.

Let T ′ be defined as in Lemma 2.2.5, starting from the tree T ′′, let t′0 be the vertex

that resulted from contracting the edges t0t′2 and t0t′3, and let W ′ = (W ′
t | t ∈ V (T ′)) be

defined by

W ′
t =



Wt if t ∈ V (T ′)− T ′[r′′′3 , t′0]

Wr3 ∪ (V (H3) ∩Wt0) if t = r′′′3

(Wr3 − V (H2)) ∪ (V (H3) ∩Wt0) if t = r′′3

Wt′2
if t = t′0

(Wt − V (H2)) ∪ (V (H3) ∩Wt0) if t ∈ T ′[r′3, t′0]− {t′0}

We claim that (T ′,W ′) is a tree decomposition of G. Indeed, since V (H2)∩Wr ⊆ Wt0

for all r ∈ T [r′3, t0] it follows that (T ′,W ′) satisfies (W1).

To show that (T ′,W ′) satisfies (W2) let v ∈ V (G), let Z = {t ∈ V (T ) : v ∈ Wt}.

and let Z ′ = {t ∈ V (T ′) : v ∈ W ′
t}. It suffices to show that Z ′ induces a connected

subset of T ′, for this is easily seen to be equivalent to (W2). To that end assume first

that v 6∈ Wt′1
= W ′

t′1
= Wt0 ∩ (V (H2) ∪ V (H3)). It follows that, since Z induces a

subtree of T , that Z ′ induces a subtree of T ′. We assume next that v ∈ Wt0 ∩ V (H2).

The choice of T ′′ and the definition of W ′ imply that no vertex in the component of T ′\r′′′3

containing t′0 belongs to Z ′. Again, it follows that Z ′ induces a subtree of T ′. Finally, let

v ∈ Wt0 ∩ V (H3). Then T ′[t′1, t
′
0] ⊆ Z ′, and it again follows that Z ′ induces a subtree of

T ′. This proves our claim that (T ′,W ′) is a tree-decomposition.

We claim that the size of (T ′,W ′) is smaller than the size of (T,W ). Let r denote the

rank of T0, and let T ′0 denote the (n, r1)-cell in (T ′,W ′) containing t′0. First, by the passing

remark made a few paragraphs ago, for every integer m ≥ n and every rank s, to every

(m, s)-cell in (T ′,W ′) other than T ′0 there corresponds a unique (m, s)-cell in (T,W ). (To
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the (n+1, r1)-cell in (T ′,W ′) with vertex-set {r′′′3 } there corresponds the (n+1, r1)-cell in

(T,W ) with vertex-set {t0}.) Second, by Lemma 2.2.5 the rank of T0 is strictly larger than

the rank of T ′0. Thus no (n, r)-cell in (T ′,W ′) corresponds to T0. It follows that (T ′,W ′)

is a tree-decomposition of G of smaller size, contrary to the minimality of (T,W ).
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CHAPTER 3

MINORS OF 2-CONNECTED GRAPHS OF LARGE PATH-WIDTH

The chapter is organized as follows. In Section 3.1 we prove that Theorem 1.1.4 follows

from the main result of this chapter, Theorem 1.1.3. In Section 3.2 we introduce “cas-

cades”, our main tool, and prove that in any tree-decomposition with no duplicate bags of

bounded width of a graph of big path-width there is an “injective” cascade of large height.

In Section 3.3 we prove that every 2-connected graph of big path-width and bounded tree-

width admits a tree-decomposition of bounded width and a cascade with linkages that are

minimal. In Section 3.4 we analyze those minimal linkages and prove that there are essen-

tially only two types of linkage. This is where we use the properties of tree-decompositions

from Chapter 2. Finally, in Section 3.5 we convert the two types of linkage into the two

families of graphs from Theorem 1.1.3.

3.1 Proof of Theorem 1.1.4

In this section we prove that Theorem 1.1.4 is implied by Theorem 1.1.3. Recall that in

the introduction we define A as the graph that consists of a cycle a1a2a3a4a5a6a1 and extra

edges a1a3, a3a5, a5a1 and C3,2 as the graph consisting of two disjoint triangles.

Lemma 3.1.1. If a graph H has no K4, C3,2, or A minor, then H has a vertex v such that

H\v is a forest.

Proof. We proceed by induction on |V H)|. The lemma clearly holds when |V (H)| = 0,

and so we may assume thatH has at least one vertex and that the lemma holds for graphs on

fewer than |V (H)| vertices. IfH has a vertex of degree at most one, then the lemma follows

by induction by deleting such vertex. We may therefore assume that H has minimum

degree at least two.
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IfH has a cutvertex, say v, then v is as desired, for ifC is a cycle inH\v, thenH\V (C)

also contains a cycle (becauseH has minimum degree at least two), and henceH has a C3,2

minor, a contradiction. We may therefore assume that H is 2-connected.

We may assume that H is not a cycle, and hence it has an ear-decomposition H =

H0∪H1∪· · ·∪Hk, where k ≥ 1,H0 is a cycle and for i = 1, 2, . . . , k the graphHi is a path

with ends ui, vi ∈ V (H0∪H1∪· · ·∪Hi−1) and otherwise disjoint fromH0∪H1∪· · ·∪Hi−1.

If u1 ∈ {ui, vi} for all i ∈ {2, 3, . . . , k}, then u1 satisfies the conclusion of the lemma,

and similarly for v1. We may therefore assume that there exist i, j ∈ {2, 3, . . . , k} such

that u1 6∈ {ui, vi} and v1 6∈ {uj, vj}. It follows that H has a K4, C3,2, or A minor, a

contradiction.

Lemma 3.1.2. If a graph H has a vertex v such that H\v is a forest, then there exists an

integer k such that H is isomorphic to a minor of Pk.

Proof. Let v be such that T := H\v is a forest. We may assume, by replacing H by a graph

with an H minor, that T is isomorphic to CTt for some t, and that v is adjacent to every

vertex of T . It follows that H is isomorphic to a minor of P2t, as desired.

Lemma 3.1.3. Let H be a 2-connected outerplanar near-triangulation with k triangles.

Then H is isomorphic to a minor of Qk. Furthermore, the minor inclusion can be chosen

in such a way that for every edge a1a2 ∈ E(H) incident with the unbounded face and for

every i ∈ {1, 2}, the vertexwi belongs to the node of ai, wherew1w2 is the base edge ofQk.

Proof. We proceed by induction on k. The lemma clearly holds when k = 1, and so we

may assume that H has at least two triangles and that the lemma holds for graphs with

fewer than k triangles. The edge a1a2 belongs to a unique triangle, say a1a2c. The triangle

a1a2c divides H into two near-triangulations H1 and H2, where the edge aic is incident

with the unbounded face of Hi. Let Q1, Q2, u1, v1, u2, v2, w1, w2 be as in the definition

of Qk. By the induction hypothesis the graph Hi is isomorphic to a minor of Qi in such a
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way that the vertex ui belongs to the node of ai and the vertex vi belongs to the node of c.

It follows that H is isomorphic to Qk in such a way that wi belongs to the node of ai.

Lemma 3.1.4. Let H be a graph that has no K4 or K2,3 minor. Then there exists an integer

k such that H is isomorphic to a minor of Qk.

Proof. It is well-known [13, Exercise 23] that the hypotheses of the lemma imply that H

is outerplanar. We may assume, by replacing H by a graph with an H minor, that H is a 2-

connected outerplanar near-triangulation. The lemma now follows from Lemma 3.1.3.

Corollary 3.1.5. Let H be a graph that has no K4, K2,3, C3,2, or A minor. Then there

exists an integer k such that H is isomorphic to a minor of Pk and H is isomorphic to a

minor of Qk.

Proof. This follows from Lemmas 3.1.1, 3.1.2 and 3.1.4.

Proof of Theorem 1.1.4, assuming Theorem 1.1.3. To prove the“if” part notice that Pk and

Qk are 2-connected and have large path-width when k is large, because Qk has a CTk−1

minor. There is no vertex v in A such that A\v is acyclic. So, A and C3,2 are not minors

of Pk for any k. The graph Qk is outerplanar, so K4 and K2,3 are not minors of Qk for any

positive integer k. This means g(H) ≥ 3 for H ∈ {K4, K2,3, C3,2, A}. This proves the “if”

part.

To prove the “only if” part, if H has no K4, K2,3, C3,2 or A minor, then by Corol-

lary 3.1.5 H is a minor of both Pk and Qk for some k. Then g(H) ≤ 2 by Theo-

rem 1.1.3.

3.2 Cascades

In this section we introduce “cascades”, our main tool. The main result of this section,

Lemma 3.2.6, states that in any tree-decomposition with no duplicate bags of bounded

width of a graph of big path-width there is an “injective” cascade of large height
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Lemma 3.2.1. Let p, w be two positive integers and let G be a graph of tree-width strictly

less than w and path-width at least p. Then for every tree-decomposition (T,X) of G of

width strictly less than w, the path-width of T is at least bp/wc .

Proof. We will prove the contrapositive. Assume there exists a tree-decomposition (T,X)

of G of width < w such that the path-width of T is less than bp/wc. Because the path-

width of T is less than bp/wc, there exists a path-decomposition (Y1, Y2, ..., Ys) of T with

|Yi| ≤ bp/wc for all i. We will construct a path-decomposition (Z1, Z2, ..., Zs) for G

with width less than p. Set Zi =
⋃
y∈Yi Xy for every i ∈ {1, 2, ..., s}. For every vertex

v ∈ V (G), v belongs to at least one set Xt for some t ∈ V (T ). The vertex t of tree T must

be in Yl for some l ∈ {1, 2, ..., s}, so v ∈ Xt ⊆ Zl. Therefore,
⋃
Zi = V (G). Similarly,

for every edge uv ∈ E(G), there exists t ∈ V (T ) such that u, v ∈ Xt. Therefore, u, v ∈ Zl

for some l ∈ {1, 2, ..., s}.

Now, if a vertex v ∈ V (G) belongs to both Za and Zb for some a, b ∈ {1, 2, ..., s}, a < b,

we will show that v ∈ Zc for all c such that a < c < b. Let c be an arbitrary integer

satisfying a < c < b. The fact that v ∈ Za implies v ∈ Xy1 for some y1 ∈ Ya. Similarly,

v ∈ Xy2 for some y2 ∈ Yb. LetH be the set of vertices of T on the path from y1 to y2. Since

y1 ∈ Ya and y2 ∈ Yb, H ∩ Ya 6= ∅ 6= H ∩ Yb. Hence, by Lemma 2.1.1 with H = T and

(T, Y ) the path-decomposition (Y1, Y2, ..., Ys), we have H ∩ Yc 6= ∅. Let t ∈ H ∩ Yc, then

v ∈ Xt ⊆ Zc. So (Z1, Z2, ..., Zs) is a path-decomposition of G. Since the width of (T,X)

is less than w, we have |Xy| ≤ w for every y ∈ Yi, where i ∈ {1, 2, ..., s}. Therefore,

|Zi| ≤ w.bp/wc ≤ p for every i ∈ {1, 2, ..., s}. Therefore, the width of (Z1, Z2, ..., Zs) is

less than p, so the path-width of G is less than p, as desired.

Since CTa has maximum degree at most three, the following lemma follows from [17,

Lemma 6].

Lemma 3.2.2. Let T be a forest with path-width at least a ≥ 1. Then there exists a

homeomorphic embedding CTa−1 ↪→ T .

30



Let η : T ↪→ T ′ . We define sp(η), the span of η, to be the set of vertices t ∈ V (T ′)

that lie on the path from η(t1) to η(t2) for some vertices t1, t2 ∈ V (T ).

Let s > 0 be an integer and let (T,X) be a tree-decomposition of a graph G. By a

cascade of height h and size s in (T,X) we mean a homeomorphic embedding η : Th ↪→ T

such that |Xη(t)| = s for every minor vertex t ∈ V (Th) and |Xt| ≥ s for every t in the span

of η.

Lemma 3.2.3. For any positive integer h and nonnegative integers a, k, the following holds.

Let m = (a + 2)h + a. Let (T,X) be a tree-decomposition of a graph G and let φ :

CTm ↪→ T be a homeomorphic embedding such that |Xt| ≥ k for all t ∈ sp(φ). If for

every t ∈ V (CTm) at height l ≤ m− a there exist a descendant t′ of t at height l+ a and a

vertex r ∈ T [φ(t), φ(t′)] such that |Xr| = k, then there exists a cascade η of height h and

size k in (T,X).

Proof. By hypothesis there exist a vertex x0 ∈ V (CTm) at height a and a vertex u0 ∈ V (T )

on the path from the image under φ of the root of CTm to φ(x0) such that |Xu0| = k. Let

x be a child of x0, and let x1 and x2 be the children of x. By hypothesis there exist, for

i = 1, 2, a vertex yi ∈ V (CTm) at height 2a + 2 that is a descendant of xi and a vertex

ui ∈ T [φ(xi), φ(yi)] such that |Xui | = k. Let r be the major root of T1, and let (t0, t1, t2)

be its trinity. We define η1 : T1 ↪→ T by η1(ti) = ui for i = 0, 1, 2 and η1(r) = φ(x). Then

η1 is a cascade of height one and size k in (T,X). If h = 1, then η1 is as desired, and so

we may assume that h > 1.

Assume now that for some positive integer l < h we have constructed a cascade ηl :

Tl ↪→ T of height l and size k in (T,X) such that for every leaf t0 of Tl other than the

minor root there exists a vertex x0 ∈ V (CTm) at height (a + 2)l + a such that the image

under ηl of every vertex on the path in Tl from the minor root to t0 belongs to the path in

T from the image under φ of the root of CTm to φ(x0). Our objective is to extend ηl to a

cascade ηl+1 of height l + 1 and size k in (T,X) with the same property. To that end let

ηl+1(t) = ηl(t) for all t ∈ V (Tl), let t0 be a leaf of Tl other than the minor root and let x0
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be as earlier in the paragraph. Let x be a child of x0, and let x1 and x2 be the children of x.

By hypothesis there exist, for i = 1, 2, a vertex yi ∈ V (CTm) at height (a+ 2)(l + 1) + a

that is a descendant of xi and a vertex ui ∈ T [φ(xi), φ(yi)] such that |Xui | = k. Let r be

the child of t0 in Tl+1, and let (t0, t1, t2) be its trinity. We define ηl+1(ti) = ui for i = 1, 2

and ηl+1(r) = φ(x). This completes the definition of ηl+1.

Now ηh is as desired.

Lemma 3.2.4. For any two positive integers h and w, there exists a positive integer p =

p(h,w) such that if G is a graph of path-width at least p, then in any tree-decomposition of

G of width less than w, there exists a cascade of height h.

Proof. Let aw+1 = 0, and for k = w,w − 1, . . . , 0 let ak = (ak+1 + 2)h + ak+1, and let

p = w(a0 + 1). We claim that p satisfies the conclusion of the lemma. To see that let

(T,X) be a tree-decomposition of G of width less than w. Let k ∈ {0, 1, . . . , w + 1} be

the maximum integer such that there exists a homeomorphic embedding φ : CTak ↪→ T

satisfying |Xt| ≥ k for all t ∈ sp(φ). Such an integer exists, because k = 0 satisfies

those requirements by Lemmas 3.2.1 and 3.2.2, and it satisfies k ≤ w, because the width

of (T,X) is less than w. The maximality of k implies that for the integers h, k and ak+1 the

hypothesis of Lemma 3.2.3 is satisfied. Thus the lemma follows from Lemma 3.2.3.

Let (T,X) be a tree-decomposition of a graph G, and let η : Th ↪→ T be a cascade of

height h and size s in (T,X). We say that η is injective if there exists I ⊆ V (G) such that

|I| < s and Xη(t) ∩Xη(t′) = I for every two distinct vertices t, t′ ∈ V (Th). We call this set

I the common intersection set of η.

Lemma 3.2.5. Let a, b, s, w be positive integers and let k be a nonnegative integer. Let

(T,X) be a tree-decomposition of a graph G of width strictly less than w. Let h =(2(a +

2)w+2)b. If there is a cascade η of height h and size s+k in (T,X) such that |
⋂
t∈V (Th)

Xη(t)| ≥

k, then either there is a cascade η′ of height a and size s+k in (T,X) such that |
⋂
t∈V (Ta)

Xη′(t)| ≥
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k+1 or there is an injective cascade η′ of height b, size s+ k and common intersection set

of size k in (T,X).

Proof. We may assume that

(∗) there does not exist a cascade η′ of height a and size s + k in (T,X) such that

|
⋂
t∈V (Ta)

Xη′(t)| ≥ k + 1.

Let F =
⋂
t∈V (Th)

Xη(t). By (∗), |F | = k. We claim the following.

Claim 3.2.5.1. For every vertex t ∈ Th at height l ≤ h − a − 2 and every u ∈ Xη(t) − F

there exists a descendant t′ ∈ V (Th) of t at height at most l + a+ 2 such that u 6∈ Xη(t′).

To prove the claim let u ∈ Xη(t) − F . By (∗) in the subtree of Th consisting of t and its

descendants there is a vertex t′ of height at most l+ a+2 such that u 6∈ Xη(t′). This proves

the claim.

We use the previous claim to deduce the following generalization.

Claim 3.2.5.2. For every vertex t ∈ V (Th) at height l ≤ h − (a + 2)w there exists a

descendant t′ ∈ V (T ) of t at height at most l + (a+ 2)w such that Xη(t) ∩Xη(t′) = F .

To prove the claim let Xη(t)\F = {u1, u2, . . . , up}, where p ≤ w. By Claim 3.2.5.1 there

exists a descendant t1 ∈ V (T ) of t at height at most l + a + 2 such that u1 6∈ Xη(t′). By

another application of Claim 3.2.5.1 there exists a descendant t2 ∈ V (T ) of t1 at height

at most l + 2(a + 2) such that u2 6∈ Xη(t′). By (W2) u1 6∈ Xη(t′). By continuing to argue

in the same way we finally arrive at a vertex tp that is a descendant of t at height at most

l + (a+ 2)p such that Xη(t) ∩Xη(tp) = F . Thus tp is as desired. This proves the claim.

Let x0 ∈ V (Th) be the minor root of Th. By Claim 3.2.5.2 and (W2) there exists a

major vertex x ∈ V (T ) at height at most (a+2)w+1 such that Xη(x0)∩Xη(x) = F . Let y1

and y2 be the children of x. By Claim 3.2.5.2 and (W2) there exists, for i = 1, 2, a minor

vertex xi ∈ V (Th) at height at most 2(a+ 2)w + 2 that is a descendant of yi and such that
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Xη(xi)∩Xη(x) = F . Let r be the major root of T1, and let (t0, t1, t2) be its trinity. We define

η1 : T1 ↪→ T by η1(ti) = η(xi) for i = 0, 1, 2 and η1(r) = η(x). Then η1 is an injective

cascade of height one and size s + k in (T,X) with common intersection set F . If b = 1,

then η1 is as desired, and so we may assume that b > 1.

Assume now that for some positive integer l < b we have constructed an injective

cascade ηl : Tl ↪→ T of height l and size s + k with common intersection set F in (T,X)

such that for every leaf t0 of Tl other than the minor root there exists a vertex x0 ∈ V (Th)

at height (2(a + 2)w + 2)l such that the image under ηl of every vertex on the path in Tl

from the minor root to t0 belongs to the path in T from the image under η of the root of

Th to η(x0). Our objective is to extend ηl to an injective cascade ηl+1 of height l + 1, size

s + k, and common intersection set F in (T,X) with the same property. To that end let

ηl+1(t) = ηl(t) for all t ∈ V (Tl), let t0 be a leaf of Tl other than the minor root, and let x0 be

as earlier in the paragraph. By Claim 3.2.5.2 and (W2) there exists a descendant x of x0 at

height at most (2(a+2)w+2)l+(a+2)w+1 such that x is major andXηl(t0)∩Xη(x) = F .

Let y1 and y2 be the children of x. By Claim 3.2.5.2 and (W2) there exists, for i = 1, 2, a

minor vertex xi ∈ V (Th) at height at most (2(a + 2)w + 2)(l + 1) that is a descendant of

yi and such that Xη(xi) ∩Xη(x) = F . Let r be the child of t0 in Tl+1, and let (t0, t1, t2) be

its trinity. We define ηl+1(ti) = η(xi) for i = 1, 2 and ηl+1(r) = η(x). This completes the

definition of ηl+1.

Now ηb is as desired.

Lemma 3.2.6. For any two positive integers h and w, there exists a positive integer p =

p(h,w) such that if G is a graph with tree-width less than w and path-width at least p, then

in any tree-decomposition (T,X) of G that has width less than w and satisfies (W4), there

is an injective cascade of height h.

Proof. Let aw = 0, and for k = w − 1, . . . , 0 let ak = (2(ak+1 + 2)w + 2)h. Let p

be the integer in Lemma 3.2.4 for input integers a0 and w. We claim that p satisfies the

conclusion of the lemma. To see that let (T,X) be a tree-decomposition of G of width
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less than w satisfying (W4). By Lemma 3.2.4, there exists a cascade η of height a0 in

(T,X). Let k ∈ {0, 1, . . . , w} be the maximum integer such that there exists a cascade

η′ : Tak ↪→ T satisfying |
⋂
t∈V (Tak )

Xη′(t)| ≥ k. Such an integer exists, because k = 0

satisfies those requirements and k < w because of (W4) and because the width of (T,X) is

less thanw. The maximality of k implies that there does not exist a cascade η′′ : Tak+1
↪→ T

satisfying |
⋂
t∈V (Tak+1

)Xη′′(t)| ≥ k + 1. Thus the lemma follows from Lemma 3.2.5.

3.3 Ordered Cascades

The main result of this section, Theorem 3.3.5, states that every 2-connected graph of big

path-width and bounded tree-width admits a tree-decomposition of bounded width and a

cascade with linkages that are minimal.

Let (T,X) be a tree-decomposition of a graph G, and let η be an injective cascade in

(T,X) with common intersection set I . Assume the size of η is |I| + s. Then we say η is

ordered if for every minor vertex t ∈ V (Th) there exists a bijection ξt : {1, 2, . . . , s} →

Xη(t) − I such that for every major vertex t0 with trinity (t1, t2, t3), there exist s disjoint

paths P1, P2, . . . , Ps in G−I such that the path Pi has ends ξt1(i) and ξt2(i), and there exist

s disjoint paths Q1, Q2, . . . , Qs in G− I such that the path Qi has ends ξt1(i) and ξt3(i). In

that case we say that η is an ordered cascade with orderings ξt. We say that the set of paths

P1, P2, . . . , Ps is a left t0-linkage with respect to η, and that the set of paths Q1, Q2, . . . , Qs

is a right t0-linkage with respect to η.

We will need to fix a left and a right t0-linkage for every major vertex t0 ∈ V (Th); when

we do so we will indicate that by saying that η is an ordered cascade in (T,X) with order-

ings ξt and specified linkages, and we will refer to the specified linkages as the left specified

t0-linkage and the right specified t0-linkage. We will denote the left specified t0-linkage by

P1(t0), P2(t0), . . . , Ps(t0) and the right specified t0-linkage by Q1(t0), Q2(t0), . . . , Qs(t0).

We say that the specified t0-linkages are minimal if for every set of disjoint paths P1, P2,

. . . , Ps inG−I fromXη(t1)−I toXη(t2)−I such that ξt1(i) is an end of Pi (let the other end
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be pi) and every set of disjoint paths Q1, Q2, . . . , Qs in G− I from Xη(t1)− I to Xη(t3)− I

such that ξt1(i) is an end of Qi (let the other end be qi) we have

∣∣∣E (⋃(xiPipi ∪ xiQiqi)
)∣∣∣ ≥ ∣∣∣E (⋃(yiPi(t0)ξt2(i) ∪ yiQi(t0)ξt3(i))

)∣∣∣ , (3.1)

where the unions are taken over i ∈ {1, 2, ..., s}, xi is the first vertex from ξt1(i) that Pi

departs from Qi, and yi is the first vertex from ξt1(i) that Pi(t0) departs from Qi(t0).

Lemma 3.3.1. Let h and s be two positive integers, and let η : Th ↪→ T be an injective

cascade of height h and size s in a linked tree-decomposition (T,X) of a graph G. Then

the cascade η can be turned into an ordered cascade with specified t0-linkages that are

minimal for every major vertex t0 ∈ V (Th).

Proof. Let s′ := s − |I|. To show that η can be made ordered let r be the minor root

of Th, let ξr : {1, 2, . . . , s′} → Xη(r) − I be arbitrary, assume that for some integer l ∈

{0, 1, . . . , h− 1} we have already constructed ξt : {1, 2, . . . , s′} → Xη(t) − I for all minor

vertices t ∈ V (Th) at height at most l, let t ∈ V (Th) be a minor vertex at height exactly

l, let t0 be its child, and let (t, t1, t2) be the trinity at t0. By condition (W3) there exist s′

disjoint paths P1, P2, . . . , Ps′ in G − I from Xη(t) − I to Xη(t1) − I and s′ disjoint paths

Q1, Q2, . . . , Qs′ in G − I from Xη(t) − I to Xη(t2) − I . We may assume that ξt(i) is an

end of Pi and Qi and we define ξt1(i) and ξt2(i) to be their other ends, respectively. We

may also assume that these paths satisfy the minimality condition (3.1). It follows that η is

an ordered cascade with orderings ξt and specified t0-linkages that are minimal for every

major vertex t0 ∈ V (Th).

Lemma 3.3.2. For every two integers a ≥ 1 and k ≥ 1 there exists an integer h = h(a, k)

such that the following holds. Color the major vertices of Th using k colors. Then there

exists a monotone homeomorphic embedding η : Ta ↪→ Th such that the major vertices of

Ta map to major vertices of the same color in Th.
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Proof. Let c be one of the colors. We will prove by induction on k and subject to that by

induction on b that there is a function h = g(a, b, k) such that there is either a monotone

homeomorphic embedding η : Ta ↪→ Th such that the major vertices of Ta map to major

vertices of the same color in Th, or a monotone homeomorphic embedding η : Tb ↪→ Th

such that the major vertices of Tb map to major vertices of color c in Th. In fact, we will

show that g(a, b, 1) = a, g(a, 1, k+1) ≤ g(a, a, k) and g(a, b+1, k+1) ≤ g(a, b, k+1)+

g(a, a, k).

The assertion holds for k = 1 by letting h = a and letting η be the identity mapping.

Assume the statement is true for some k ≥ 1, let the major vertices of Th be colored using

k + 1 colors, and let c be one of the colors. If b = 1, then if Th has a major vertex colored

c, then the second alternative holds; otherwise at most k colors are used and the assertion

follows by induction on k.

We may therefore assume that the assertion holds for some integer b ≥ 1 and we must

prove it for b + 1. To that end we may assume that Th has a major vertex t0 colored c at

height at most g(a, a, k), for otherwise the assertion follows by induction on k. Let the

trinity at t0 be (t1, t2, t3). For i = 2, 3 let Ri be the subtree of Th with minor root ti. If

for some i ∈ {2, 3} there exists a monotone homeomorphic embedding Ta ↪→ Ri such that

the major vertices of Ta map to major vertices of the same color in Th, then the statement

holds. We may therefore assume that for i ∈ {2, 3} there exists a monotone homeomorphic

embedding ηi : T ib ↪→ Ri such that the major vertices of T ib map to major vertices of

color c, the major root of Tb+1 is r0, the trinity at r0 is (r1, r2, r3) and T ib is the subtree of

Tb+1 − {r0, r1} with minor root ri. Let η : Tb+1 ↪→ Th be defined by η(t) = ηi(t) for

t ∈ V (T ib ), η(r0) = t0 and η(r1) is defined to be the minor root of Th. Then η : Tb+1 ↪→ Th

is as desired. This proves the existence of the function g(a, b, k).

Now h(a, k) = g(a, a, k) is as desired.

Let (T,X) be a tree-decomposition of a graph G, and let η : Th ↪→ T be an injective

cascade in (T,X) with common intersection set I . Let t0 ∈ V (Th) be a major vertex, and
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let (t1, t2, t3) be the trinity at t0. We define the η-torso at t0 as the subgraph of G induced

by
⋃
Xt − I , where the union is taken over all t in V (T ) such that the unique path in T

from t to η(t0) does not contain η(t1),η(t2), or η(t3) as an internal vertex.

Let s > 0 be an integer. Let (T,X) be a tree-decomposition of a graph G, let η : Th ↪→

T be an ordered cascade in (T,X) with size |I|+s and orderings ξt, where I is the common

intersection set of η. Let t0 ∈ V (Th) be a major vertex, let (t1, t2, t3) be the trinity at t0, let

G′ be the η-torso at t0, and let i, j ∈ {1, 2, . . . , s} be distinct. We say that t0 has property

Aij in η if there exist disjoint tripods Li, Lj in G′ such that for each m ∈ {i, j} the tripod

Lm has feet ξt1(m), ξt2(m2), ξt3(m3) for some m2,m3 ∈ {i, j}.

We say that t0 has property Bij in η if there exist vertices vx,y for all x ∈ {i, j}, y ∈

{1, 2, 3}, and tripods Li, Lj in G′ with centers ci, cj such that

• for each y ∈ {1, 2, 3}, {vi,y, vj,y} = {ξty(i), ξty(j)}

• for each m ∈ {i, j}, Lm has feet vm,1, vm,2, vm,3

• Li ∩ Lj = ciLivi,3 ∩ cjLjvj,2 and it is a path that does not contain ci, cj .

We say that t0 has propertyCij in η if there exist three pairwise disjoint pathsRi, Rj, Rij

and a pathR inG′ such that the ends ofRi are ξt1(i) and ξt2(i), the ends ofRj are ξt1(j) and

ξt3(j), the ends ofRij are ξt2(j) and ξt3(i), andR is internally disjoint fromRi, Rj, Rij and

connects two of these three paths. We will denote these paths asRi(t0), Rj(t0), Rij(t0), R(t0)

when we want to emphasize they are in the η-torso at the major vertex t0.

We say that the path Pi of a left or right t0-linkage is confined if it is a subgraph of the

η-torso at t0.

Now let η : Th ↪→ T be an ordered cascade in (T,X) with orderings ξt and specified

linkages. Let t0 ∈ V (Th) be a major vertex with trinity (t1, t2, t3), and let P1, P2, . . . , Ps be

the left specified t0-linkage. We define At0 to be the set of integers i ∈ {1, 2, . . . , s} such

that the path Pi is confined, and we define Bt0 in the same way but using the right specified

t0-linkage instead. Define Ct0 as the set of all triples (i, l,m) such that i ∈ {1, 2, . . . , s},
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the path Pi is not confined and when following Pi from ξt1(i), it exits the η-torso at t0 for

the first time at ξt3(l) and re-enters the η-torso at t0 for the last time at ξt3(m). Let Dt0 be

defined similarly, but using the right t0-linkage instead. We call the sets At0 , Bt0 , Ct0 and

Dt0 the confinement sets for η at t0 with respect to the specified linkages.

Let At0 and Bt0 be the confinement sets for η at t0. We say that t0 has property C in η

if s is even, At0 and Bt0 are disjoint and both have size s/2, and there exist disjoint paths

R1, R2, . . . , R3s/2 in G′ in such a way that

• each Ri is a subpath of both the left specified t0-linkage and the right specified t0-

linkage,

• for i ∈ At0 , the path Ri has ends ξt1(i) and ξt2(i),

• for i ∈ Bt0 the path Ri has ends ξt1(i) and ξt3(i), and

• for i = s+ 1, s+ 2, . . . , 3s/2 the path Ri has one end ξt2(k) and the other and ξt3(l)

for some k ∈ Bt0 and l ∈ At0 .

Let (T,X) be a tree-decomposition of a graphG, let η : Th ↪→ T be a cascade in (T,X)

and let γ : Th′ ↪→ Th be a monotone homeomorphic embedding. Then the composite

mapping η′ := η ◦ γ : Th′ ↪→ T is a cascade in (T,X) of height h′, and we will call it a

subcascade of η.

Lemma 3.3.3. Let (T,X) be a tree-decomposition of a graph G, let η : Th ↪→ T be an

ordered cascade in (T,X) with orderings ξt, specified linkages and common intersection

set I , let γ : Th′ ↪→ Th be a monotone homeomorphic embedding, and let η′ := η ◦ γ :

Th′ ↪→ T be a subcascade of η of height h′. Then for every major vertex t0 ∈ V (Th′)

(i) η′ is an ordered cascade with orderings ξγ(t) and common intersection set I ,

(ii) if the vertex γ(t0) has property Aij (Bij , Cij , resp.) in η, then t0 has property Aij

(Bij , Cij , resp.) in η′.
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Furthermore, the specified linkages for η′ may be chosen in such a way that

(iii) (At0 , Bt0 , Ct0 , Dt0) = (Aγ(t0), Bγ(t0), Cγ(t0), Dγ(t0)),

(iv) the vertex t0 has property C in η′ if and only if γ(t0) has property C in η, and

(v) if the specified linkages for η are minimal, then the specified linkages for η′ are

minimal.

Proof. For each major vertex t ∈ V (Th′) or t ∈ V (Th) we denote its trinity by (t1(t), t2(t),

t3(t)). Assume t0 is a major vertex of Th′ . Let v0 = γ(t1(t0)), v1, . . . , vk = t1(γ(t0)) be the

minor vertices on Th[v0, vk]. Let U be the union of the left (or right) linkage fromXη(vi)−I

to Xη(vi+1) − I for all i ∈ {0, 1, . . . , k − 1} depending on whether vi+1 is a left (or right)

neighbor of its parent. Let P be the left specified γ(t0)-linkage and Q be the right specified

γ(t0)-linkage. Then U ∪P is a left t0-linkage and U ∪Q is a right t0-linkage. We designate

U ∪ P to be the left specified t0-linkage and U ∪ Q to be the right specified t0-linkage. It

is easy to see that this choice satisfies the conclusion of the lemma.

Let (T,X) be a tree-decomposition of a graph G, and let η be an ordered cascade with

specified linkages in (T,X) of height h and size |I|+s, where I is the common intersection

set. We say that η is regular if there exist sets A,B ⊆ {1, 2, . . . , s}, and sets C and D such

that the confinement sets At0 , Bt0 , Ct0 and Dt0 satisfy At0 = A, Bt0 = B, Ct0 = C and

Dt0 = D for every major vertex t0 ∈ V (Th).

Lemma 3.3.4. For every two positive integers a and s there exists a positive integer h =

h(a, s) such that the following holds. Let (T,X) be a linked tree-decomposition of a graph

G. If there exists an injective cascade η of height h in (T,X), then there exists a regular

cascade η′ : Ta ↪→ T of height a in (T,X) with specified t0-linkages that are minimal for

every major vertex t0 ∈ V (Ta) such that η′ has the same size and common intersection set

as η.
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Proof. Let η be an injective cascade of size |I| + s and height h in (T,X), where we will

specify h in a moment. By Lemma 3.3.1 η can be turned into an ordered cascade with

specified t0-linkages that are minimal for every major vertex t0 ∈ V (Th). For every major

vertex t0 ∈ V (Th), the number of possible quadruples (At0 , Bt0 , Ct0 , Dt0) is a finite number

k = k(s) that depends only on s.

Consider each choice of (At0 , Bt0 , Ct0 , Dt0) as a color; then by Lemma 3.3.2, there

exists a positive integer h = h(a, k) such that there exists a monotone homeomorphic

embedding γ : Ta ↪→ Th such that the quadruple (Aγ(t), Bγ(t), Cγ(t), Dγ(t)) for η is the

same for every t ∈ V (Ta). Now, let η′ = η ◦ γ : Ta → T . Then η′ is as desired by

Lemma 3.3.3.

The following is the main result of this section.

Theorem 3.3.5. For any two positive integers a and w, there exists a positive integer p =

p(a, w) such that the following holds. Let k be an integer such that k ≤ w and let G be

a k-connected graph of tree-width less than w and path-width at least p. Then G has a

tree-decomposition (T,X) such that:

• (T,X) has width less than w,

• (T,X) satisfies (W1)–(W7), and

• for some s, where k ≤ s ≤ w, there exists a regular cascade η : Ta ↪→ T of height

a and size s in (T,X) with specified t0-linkages that are minimal for every major

vertex t0 ∈ V (Ta).

Proof. Given positive integers a and w let h be as in Lemma 3.3.4, and let p = p(h,w) be

as in Lemma 3.2.6. We claim that p satisfies the conclusion of the theorem. To see that letG

be a graph of tree-width less than w and path-width at least p. By Theorem 2.1.4, G admits

a tree-decomposition (T,X) of width less than w satisfying (W1)–(W7). By Lemma 3.2.6

there is an injective cascade of height h in (T,X). Let s be the size of this cascade, then
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s ≤ w. If G is k-connected, then s ≥ k. The last conclusion of the theorem follows from

Lemma 3.3.4.

3.4 Taming Linkages

Lemma 3.4.6, the main result of this section, states that there are essentially only two types

of linkage.

Let s > 0 be an integer. Let (T,X) be a tree-decomposition of a graph G, let η : Th ↪→

T be an ordered cascade in (T,X) with size |I|+s and orderings ξt, where I is the common

intersection set of η. Let t0 ∈ V (Th) be a major vertex, let (t1, t2, t3) be the trinity at t0, let

G′ be the η-torso at t0, and let i, j ∈ {1, 2, . . . , s} be distinct. We say that t0 has property

ABij in η if there exist disjoint paths Li, Lj and disjoint paths Ri, Rj in G′ such that the

two ends of Lm are ξt1(m) and ξt2(m) for each m ∈ {i, j} and the two ends of Rm are

ξt1(m) and ξt3(m) for each m ∈ {i, j}.

Lemma 3.4.1. Let (T,X) be a tree-decomposition of a graph G. Let η : T1 ↪→ T be an

ordered cascade in (T,X) with orderings ξt of height one and size s + |I|, where I is the

common intersection set. Let t0 be the major vertex in T1, and let i, j ∈ {1, 2, . . . , s} be

distinct. If t0 has property ABij in η, then t0 has either property Aij or property Bij in η.

Proof. Let (t1, t2, t3) be the trinity at t0. Let G′ be the η-torso at t0. Since t0 has property

ABij in η, there exist disjoint paths Li, Lj and disjoint paths Ri, Rj in G′ such that two

endpoints of Lm are ξt1(m) and ξt2(m) for all m ∈ {i, j}, and two endpoints of Rm are

ξt1(m) and ξt3(m) for all m ∈ {i, j}.

We may choose Li, Lj, Ri, Rj such that |E(Li) ∪ E(Lj) ∪ E(Ri) ∪ E(Rj)| is as small

as possible.

Let xk = ξt1(k) and zk = ξt3(k) for k ∈ {i, j}. Starting from zi, let a be the first

vertex where Ri meets Li ∪ Lj , and starting from zj , let b be the first vertex where Rj

meets Li ∪Lj . If a and b are not on the same path (one on Li and the other on Lj), then by
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considering Li, Lj and the parts of Ri and Rj from zi to a and from zj to b we see that t0

has property Aij in η.

If a and b are on the same path, then we may assume they are on Li. We may also

assume that a ∈ Li[yi, b]. Then following Ri from a away from zi, the paths Ri and Li

eventually split; let c be the vertex where the split occurs. In other words, c is such that

aLic∩ aRic is a path and its length is maximum. Let d be the first vertex on cRixi ∩ (Li ∪

Lj)−{c} when traveling on Ri from c to xi. If d ∈ V (Li), then by replacing cLid by cRid

we obtain a contradiction to the choice of Li, Lj, Ri, Rj . Thus d ∈ V (Lj). Now Li, Lj and

the paths ziRid and zjRjb show that t0 has property Bij in η.

Let (T,X) be a tree-decomposition of a graph G and let η : Th ↪→ T be an injective

cascade in (T,X) of height h and size |I|+s, where I is the common intersection set. Let v

be a vertex of Th and let Y consist of η(v) and the vertex-sets of all components of T−η(v)

that do not contain the image under η of the minor root of Th. Let H be the subgraph of G

induced by
⋃
t∈Y Xt − I . We will call H the outer graph at v.

Lemma 3.4.2. Let (T,X) be a tree-decomposition satisfying (W6) of a graph G and let

η : Th ↪→ T be an ordered cascade in (T,X) of height h and size |I| + s, where I is

the common intersection set. Let v0 be a major vertex of Th and let v be a minor vertex

adjacent to v0. let Y consist of η(v) and the vertex-set of the component of T − η(v) that

contains η(v0). Let H be the subgraph of G induced by
⋃
t∈Y Xt − I . Let x, y ∈ Xη(v).

Then there exists a path of length at least two with ends x and y and every internal vertex

in V (H)−Xη(v). In particular, let v be a minor vertex of Th at height at most h− 1, let H

be the outer graph at v, and let x, y ∈ Xη(v). Then there exists a path of length at least two

with ends x and y and every internal vertex in V (H)−Xη(v).

Proof. Let v1 be a child of v0 if v is the parent of v0, otherwise let v1 be the parent of v0.

Let B be the component of T − η(v) that contains η(v1). We show that x is B-tied. This

is obvious if x ∈ I , and so we may assume that x 6∈ I . Since η is ordered, there exist
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s disjoint paths from Xη(v) − I to Xη(v1) − I in G − I . It follows that each of the paths

uses exactly one vertex of Xη(v) − I , and that vertex is its end. Let P be the one of those

paths that ends in x, and let x′ be the neighbor of x in P . The vertex x′ exists, because

Xη(v) ∩ Xη(v1) = I . By (W1) there exists a vertex t ∈ V (T ) such that x, x′ ∈ Xt. Since

P − x is disjoint from Xη(v), it follows from Lemma 2.1.1 applied to the path P − x and

vertices t and η(v1) of T that t ∈ V (B). Thus x is B-tied and the same argument shows

that so is y. Hence the lemma follows from (W6).

We will refer to a path as in Lemma 3.4.2 as a W6-path.

Let h, h′ be integers. We say that a homeomorphic embedding γ : Th′ ↪→ Th is weakly

monotone if for every two vertices t, t′ ∈ V (Th′)

• if t′ is a descendant of t in Th′ , then the vertex γ(t′) is a descendant of γ(t) in Th

• if t is a minor vertex of Th′ , then the vertex γ(t) is minor in Th.

Let (T,X) be a tree-decomposition of a graphG, let η : Th ↪→ T be a cascade in (T,X) and

let γ : Th′ ↪→ Th be a weakly monotone homeomorphic embedding. Then the composite

mapping η′ := η ◦ γ : Th′ ↪→ T is a cascade in (T,X) of height h′, and we will call it a

weak subcascade of η.

Lemma 3.4.3. Let s ≥ 2 be an integer, let (T,X) be a tree-decomposition of a graph G

satisfying (W6), and let η : T5 ↪→ T be a regular cascade in (T,X) of height five and

size |I| + s with specified linkages that are minimal, where I is the common intersection

set of η. Then either there exists a weak subcascade η′ : T1 ↪→ T of η of height one such

that the unique major vertex of T1 has property Aij or Bij in η′ for some distinct integers

i, j ∈ {1, 2, . . . , s}, or the major root of T5 has property C in η.

Proof. We will either construct a weakly monotone homeomorphic embedding γ : T1 ↪→

T5 such that in η′ = η ◦ γ the major root of T1 will have property ABij for some dis-

tinct i, j ∈ {1, 2, ..., s}, or establish that the major root of T5 has property C in η. By

Lemma 3.4.1 this will suffice.
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Since η is regular, there exist sets A,B,C,D as in the definition of regular cascade.

Let t0 be the unique major vertex of T1 and let (t1, t2, t3) be its trinity. Let u0 be the major

root of T5 and let (v1, v2, v3) be its trinity. Let u1 be the major vertex of T5 of height one

that is adjacent to v3 and let (v3, v4, v5) be its trinity. Let us recall that for a major vertex

u of T5 we denote the paths in the specified left u-linkage by Pi(u) and the paths in the

specified right u-linkage by Qi(u). If there exist two distinct integers i, j ∈ A∩B, then the

paths Pi(u0), Pj(u0), Qi(u0), Qj(u0) show that u0 has property ABij in η. Let γ : T1 ↪→ T5

be the homeomorphic embedding that maps t0, t1, t2, t3 to u0, v1, v2, v3, respectively. Then

η′ = η ◦ γ is as desired. We may therefore assume that |A ∩B| ≤ 1.

For i ∈ {1, 2, . . . , s} − A the path Pi(u0) exits and re-enters the η-torso at u0, and it

does so through two distinct vertices of Xη(v3). But |Xη(v3)\I| = s, and hence |A| ≥ s/2.

Similarly |B| ≥ s/2. By symmetry we may assume that |B| ≥ |A|. It follows that

|A| = ds/2e, and hence for i ∈ {1, 2, . . . , s} − A and every major vertex w of T5 the path

Pi(w) exits and re-enters the η-torso at w exactly once. The set C includes an element of

the form (i, l,m), which means that the vertices ξw1(i), ξw3(l), ξw3(m), ξw2(i) appear on the

path Pi(w) in the order listed. Let li := l,mi := m, xi(w) := ξw3(l), yi(w) := ξw3(m),

Xi(w) := ξw1(i)Pi(w)xi(w) and Yi(w) := yi(w)Pi(w)ξw2(i). Thus Xi(w) and Yi(w) are

subpaths of the η-torso at w. We distinguish two main cases.

Main case 1: |A ∩ B| = 1. Let j be the unique element of A ∩ B. We claim that

B − A 6= ∅. To prove the claim suppose for a contradiction that B ⊆ A. Thus |B| = 1,

and since |B| ≥ |A| we have |A| = 1, and hence s = 2. We may assume, for the duration

of this paragraph, that A = B = {1}. The paths P1(u0), X2(u0), Y2(u0) are pairwise

disjoint, because they are subgraphs of the specified left u0-linkage. The path Q2(u0) is

unconfined, and hence it has a subpath R joining ξv2(1) and ξv2(2) in the outer graph at v2.

It follows that P1(u0)∪R∪Y2(u0) and X2(u0) are disjoint paths from Xη(v1) to Xη(v3), and

it follows from the minimality of the specified u0-linkage that they form the specified right

u0-linkage, contrary to 1 ∈ A. This proves the claim that B−A 6= ∅, and so we may select
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an element i ∈ B − A.

Xη(v1)

Xi(u0)Pj(u0)

R1

R3

R2

Yi(u0)

Figure 3.1: First case of the construction of the path R.

Let us assume as a case that either li ∈ A or li 6∈ B. In this case we let γ map t0, t1, t2, t3

to u0, v1, v2, v5, respectively, and we will prove that t0 has property ABij in η′. To that end

we need to construct two pairs of disjoint paths. The first pair is Qi(u0) ∪ Qi(u1) and

Qj(u0) ∪ Qj(u1). The second pair will consist of Pj(u0) and another path from ξv1(i)

to ξv2(i) which is a subgraph of a walk that we are about to construct. It will consist of

Xi(u0) ∪ Yi(u0) and a walk R in the outer graph of v3 with ends xi(u0) and yi(u0). To

construct the walk R we will construct paths R1, R2 and a walk R3, whose union will

contain the desired walk R. If li ∈ A, then we let R1 := Pli(u1). If li 6∈ B, then the

path Qli(u1) is unconfined, and hence includes a subpath R1 from xi(u0) to Xη(v4) that is a

subgraph of the η-torso at u1. We need to distinguish two subcases depending on whether

mi ∈ B. Assume first that mi 6∈ B and refer to Figure 3.1. Then similarly as above the

path Qmi
(u1) is unconfined, and hence includes a subpath R3 from yi(u0) to Xη(v4) that is

a subgraph of the η-torso at u1, and we let R2 be a W6-path in the outer graph at v4 joining

the ends of R1 and R3 in Xη(v4). This completes the subcase mi 6∈ B, and so we may

assume that mi ∈ B. In this subcase we define R3 := Yi(u1) ∪Qmi
(u1) and we define R2

as above. See Figure 3.2. This completes the case that either li ∈ A or li 6∈ B.

Next we consider the case li ∈ B and mi 6∈ A − B. We proceed similarly as in

the previous paragraph, but with these exceptions: the homeomorphic embedding γ will

map t3 to v4, rather than v5, the first pair of disjoint paths will now be Qi(u0) ∪ Pi(u1)
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Xη(v1)

Xi(u0)Pj(u0)

R1

R2

R3

Yi(u0)

Figure 3.2: Second case of the construction of the path R.

and Qj(u0) ∪ Pj(u1), and for the second pair we define R1 = Qli(u1), R3 = Xmi
(u1) if

mi 6∈ A and R3 = Qmi
(u1) if mi ∈ B, and R2 will be a W6-path in the outer graph of v5

joining the ends of R1 and R3.

Therefore assume that li ∈ B − A and mi ∈ A − B for every i ∈ B − A. Let u2

be the major vertex of T5 at height two whose trinity includes v5 and assume its trinity is

(v5, v6, v7). Let u3 be the major vertex of T5 at height three whose trinity includes v7 and

assume its trinity is (v7, v8, v9). Let γ map t0, t1, t2, t3 to u0, v1, v2, v8, respectively. Then t0

also has property ABij in η′. To see that the first pair of disjoint paths is Qi(u0)∪Qi(u1)∪

Qi(u2) ∪ Pi(u3) and Qj(u0) ∪Qj(u1) ∪Qj(u2) ∪ Pj(u3). The first path of the second pair

is Pj(u0). Let R1 = Yi(u0) ∪ Qmi
(u1) ∪ Pmi

(u2), R2 = Pj(u2) ∪ Qj(u2) ∪ Qj(u3), and

R3 = Xi(u0) ∪ Qli(u1) ∪ Xli(u2) ∪ Xlli
(u3). Then the second path of the second pair is

a path from ξv1(i) to ξv2(i) that is a subgraph of R1 ∪ R2 ∪ R3 ∪ R4 ∪ R5, where R4 is a

W6-path in the outer graph of v6 joining the ends of R1 and R2, and R5 is a W6-path in the

outer graph of v9 joining the ends of R2 and R3. See Figure 3.3. This completes main case

1.

Main case 2: A ∩ B = ∅. It follows that s is even and |A| = |B| = s/2. Assume as a

case that for some integer i ∈ B either li,mi ∈ A or li,mi ∈ B. But the integers li,mi are

pairwise distinct, and so if li,mi ∈ A, then there exists j ∈ B such that lj,mj ∈ B, and

similarly if li,mi ∈ B. We may therefore assume that li,mi ∈ A and lj,mj ∈ B for some

distinct i, j ∈ B. Let us recall that u2 is the child of v5 and (v5, v6, v7) is its trinity. We
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Xη(v1)

Xi(u0)Pj(u0) Yi(u0)

R1

R2

R3

R4

R5
Xη(v8)

Xη(v2)

Figure 3.3: Second pair when li ∈ B − A and and mi ∈ A−B.

let γ map t0, t1, t2, t3 to u0, v1, v2, v6, respectively, and we will prove that t0 has property

ABij in η′. To that end we need to construct two pairs of disjoint paths. The first pair

is Qi(u0) ∩ Qi(u1) ∩ Pi(u2) and Qj(u0) ∩ Qj(u1) ∩ Pj(u2). The first path of the second

pair will consist of the union of Xi(u0) with a subpath of Qli(u1) from Xη(v3) to Xη(v4),

and Yi(u0) with a subpath of Qmi
(u1) from Xη(v3) to Xη(v4), and a suitable W6-path in

the outer graph of v4 joining their ends, and the second path will consist of the union of

Xj(u0) ∪ Qlj(u1) ∪ Qlj(u2) and Yj(u0) ∪ Qmj
(u1) ∪ Qmj

(u2) and a suitable W6-path in

the outer a graph of v7 joining their ends. See Figure 3.4. This completes the case that for

some integer i ∈ B either li,mi ∈ A or li,mi ∈ B.

We may therefore assume that for every i ∈ B one of li,mi belongs to A and the other

belongs to B. Let us recall that for every i ∈ B a subpath of Pi(u0) joins ξv3(li) to ξv3(mi)

in the outer graph at v3 and is disjoint from the η-torso at u0, except for its ends. Let J be

the union of these subpaths; then J is a linkage from {ξv3(i) : i ∈ A} to {ξv3(i) : i ∈ B}.

For i ∈ B the path Qi(u0) is a subgraph of the η-torso at u0. For i ∈ A the intersection

of the path Qi(u0) with the η-torso at u0 consists of two paths, one from Xη(v1) to Xη(v2),

and the other from Xη(v2) to Xη(v3). Let L denote the union of these subpaths over all

i ∈ A. It follows that J ∪ L ∪
⋃
i∈B Qi(u0) is a linkage from Xη(v1) to Xη(v2), and so by
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Xη(v1)

Xj(u0)Yj(u0)

Xη(v2)

Xη(v6)

Qlj(u2)

Figure 3.4: Second pair when li,mi ∈ A and lj,mj ∈ B for some distinct i, j ∈ B.

the minimality of the specified u0-linkages, it is equal to the specified left u0-linkage. It

follows that u0 has property C in η.

Lemma 3.4.4. Let (T,X) be a tree-decomposition of a graph G satisfying (W6) and (W7).

If there exists a regular cascade η : T3 ↪→ T with orderings ξt in which every major vertex

has property C, then there is a weak subcascade η′ of η of height one such that the major

vertex in η′ has property Cij for some i, j.

Proof. Let the common confinement sets for η be A,B,C,D. For a major vertex w ∈

V (T3) with trinity (v1, v2, v3) there are disjoint paths in the η-torso at w as in the definition

of property C. For a ∈ A and b ∈ B let Ra(w) denote the path with ends ξv1(a) and ξv2(a),

let Rb(w) denote the path with ends ξv1(b) and ξv3(b), and let Rab(w) denote the path with

ends ξv2(b) and ξv3(a).

Assume the major root of T3 is u0 and its trinity is (v1, v2, v3), and let I be the common

intersection set of η. Then η(v1), η(v2), η(v3) is a triad in T with center η(u0) and for all

i ∈ {1, 2, 3} we have Xη(vi) ∩Xη(u0) = I = Xη(v1) ∩Xη(v2) ∩Xη(v3), and hence the triad is

not X-separable by (W7). Thus by Lemma 2.1.1 there is a path R(u0) connecting two of

the three sets of disjoint paths in the η-torso at u0. Assume without loss of generality that

one end of R(u0) is in a path Ri(u0), where i ∈ A. Then the other end of R(u0) is either in

a path Rj(u0), where j ∈ B; or in a path Raj(u0), where j ∈ B and a ∈ A. In the former
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case we define a ∈ A to be such that Raj(u0) is a path in the family.

Let the major root of T1 be t0 and its trinity be (t1, t2, t3). Let γ(t0) = u0, γ(t1) = v1,

γ(t2) = v2. Let the major vertex that is the child of v3 be u1, and the trinity at u1 be

(v3, v4, v5). Let γ(t3) = v5. We will prove that t0 has property Cij in η′ = η ◦ γ. Let b ∈ B

be such that Rib(u1) is a member of the family of the disjoint paths in the η-torso at u1

as in the definition of property C. By Lemma 3.4.2, there exists a W6-path P in the outer

graph at v4 joining ξv4(a) and ξv4(b). By considering the paths Ri(u0), Rj(u0) ∪ Rj(u1),

Raj(u0) ∪ Ra(u1) ∪ P ∪ Rib(u1) and R(u0) we find that t0 has property Cij in η′, as

desired.

Lemma 3.4.5. Let s ≥ 2 be an integer and let (T,X) be a tree-decomposition of a graphG

satisfying (W6). Let η : T3 ↪→ T be an ordered cascade in (T,X) of height three and size

|I|+ s with orderings ξt and common intersection set I such that every major vertex of T3

has property Cij for some distinct i, j ∈ {1, 2, . . . , s}. Then there exists a weak subcascade

η′ : T1 ↪→ T of η of height one such that the unique major vertex of T1 has property Bij in

η′.

Proof. Assume that three major vertices at height zero and one of T3 are u0, u1, u2. Let the

trinity at u0 be (v1, v2, v3), the trinity at u1 be (v2, v4, v5), and the trinity at u2 be (v3, v6, v7).

Assume the major vertex of T1 is t0, and its trinity is (t1, t2, t3). For a major vertex w ∈

V (T3) let Ri(w), Rj(w), Rij(w) and R(w) be as in the definition of property Cij .

We need to find a weakly monotone homeomorphic embedding γ : T1 ↪→ T3 such

that η′ = η ◦ γ satisfies the requirement. Set γ(t0) = u0 and γ(t1) = v1. Our choice for

γ(t2) will be v4 or v5, depending on which two of the three paths Ri(u1), Rj(u1), Rij(u1)

in the η-torso at u1 the path R(u1) is connecting. If R(u1) is between Ri(u1) and Rj(u1),

then choose either v4 or v5 for γ(t2). If R(u1) is between Ri(u1) and Rij(u1), then set

γ(t2) = v4, and if it is between Rj(u1) and Rij(u1), then set γ(t2) = v5. Do this similarly

for γ(t3). Then η′ = η ◦ γ will satisfy the requirement. In fact, we will prove this for the
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case whenR(u1) is betweenRi(u1) andRij(u1) andR(u2) is betweenRj(u2) andRij(u2).

See Figure 3.5. The other five cases are similar.

Xη(v1)

x
y

z
w

P1 P2

Rj(u0)
Ri(u0) Rij(u0)

Figure 3.5: The case when R(u1) is between Ri(u1) and Rij(u1) and R(u2) is between
Rj(u2) and Rij(u2).

In this case, our choice is γ(t0) = u0, γ(t1) = v1, γ(t2) = v4, γ(t3) = v7. Assume

the two endpoints of R(u1) are x and y and the two endpoints of R(u2) are w and z. By

Lemma 3.4.2, there exists a W6-path P1 between ξv5(i) and ξv5(j) in the outer graph at v5

and a W6-path P2 between ξv6(i) and ξv6(j) in the outer graph at v6. Now let

P = yRij(u1)ξv5(i) ∪ P1 ∪Rj(u1) ∪Rij(u0) ∪Ri(u2) ∪ P2 ∪ ξv6(j)Rij(u2)w,

Li = Ri(u0) ∪Ri(u1) ∪R(u1) ∪ P ∪ wRij(u2)ξv7(i)

and

Lj = Rj(u0) ∪Rj(u2) ∪R(u2) ∪ P ∪ yRij(u1)ξv4(j).

The tripods Li and Lj show that the major vertex of η′ = η ◦ γ : T1 ↪→ T has property Bij .

Lemma 3.4.6. For every positive integers h′ and w ≥ 2 there exists a positive integer

h = h(h′, w) such that the following holds. Let s be a positive integer such that 2 ≤ s ≤ w.

Let (T,X) be a tree-decomposition of a graph G of width less than w and satisfying (W6)

and (W7). Assume there exists a regular cascade η : Th ↪→ T of size |I|+ s with specified
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linkages that are minimal, where I is its common intersection set. Then there exist distinct

integers i, j ∈ {1, 2, . . . , s} and a weak subcascade η′ : Th′ ↪→ T of η of height h′ such

that

• every major vertex of Th′ has property Aij in η′, or

• every major vertex of Th′ has property Bij in η′

Proof. Let h(a, k) be the function of Lemma 3.3.2, let a3 = 3h′, a2 = h(a3, 2
(
w
2

)
), a1 =

5a2 and h = h(a1, 2). Consider having property C or not having property C as colors, then

by Lemma 3.3.2 there exists a monotone homeomorphic embedding γ : Ta1 ↪→ Th such

that either γ(t) has property C in η for every major vertex t ∈ V (Ta1) or γ(t) does not have

property C in η for every major vertex t ∈ V (Ta1). By Lemma 3.3.3 η1 = η ◦ γ : Ta1 ↪→ T

is still a regular cascade with specified linkages that are minimal. Also, either t has property

C in η1 for every major vertex t ∈ V (Ta1) or t does not have property C in η1 for every

major vertex t ∈ V (Ta1).

If t has property C in η1 for every major vertex t ∈ V (Ta1), then by Lemma 3.4.4

there exists a weak subcascade η2 of η1 of height a2 such that every major vertex of Ta2

has property Cij in η2 for some distinct i, j ∈ {1, 2, ..., s}. Consider each choice of pair

i, j as a color; then by Lemma 3.3.2 there exists a monotone homeomorphic embedding

γ1 : Ta3 ↪→ Ta2 such that for some distinct i, j ∈ {1, 2, ..., s}, γ1(t) has property Cij in η2

for every major vertex t ∈ V (Ta3). Let η3 = η2 ◦ γ1. Then by Lemma 3.3.3 this implies t

has propertyCij in η3 for every major vertex t ∈ V (Ta3). Then by Lemma 3.4.5 there exists

a weak subcascade η4 : h′ ↪→ a3 of η3 such that every major vertex of Th′ has property Bij

in η4. Hence η4 is as desired.

If t does not have property C in η1 for every major vertex t ∈ V (Ta1), then by Lemma 3.4.3

there exists a weak subcascade η2 of η1 of height a2 such that every major vertex of Ta2

has property Aij or Bij for some distinct i, j ∈ {1, 2, ..., s}. Consider each property Aij

or Bij as a color; then by Lemma 3.3.2 there exists a monotone homeomorphic embedding
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γ1 : Th′ ↪→ Ta2 such that for some distinct i, j ∈ {1, 2, ..., s}, either γ1(t) has property

Aij in η2 for every major vertex t ∈ V (Th′) or γ1(t) has property Bij in η2 for every major

vertex t ∈ V (Th′). Let η3 = η2 ◦ γ1. Then t has property Aij in η3 for every major vertex

t ∈ V (Th′) or t has property Bij in η3 for every major vertex t ∈ V (Th′) by Lemma 3.3.3.

Hence η3 is as desired.

3.5 Proof of Theorem 1.1.3

By Lemmas 3.1.2 and 3.1.4 Theorem 1.1.3 is equivalent to the following theorem.

Theorem 3.5.1. For any positive integer k, there exists a positive integer p = p(k) such

that for every 2-connected graph G, if G has path-width at least p, then G has a minor

isomorphic to Pk or Qk.

We need the following lemma.

Lemma 3.5.2. Let (T,X) be a tree-decomposition of a graph G, let η : Th ↪→ T be an

ordered cascade in (T,X) with orderings ξt of height h and size s + I , where I is the

common intersection set, and let i, j ∈ {1, 2, . . . , s} be distinct and such that every major

vertex of Th has property Bij in η. Let t be the minor root of Th, and let w1w2 be the base

edge of Qh. For every major vertex t0 in Th let Vt0 be the vertex set of the η-torso at t0.

Let G′ be the subgraph of G induced by
⋃
t0
Vt0 , where the union is taken over all major

vertices t0 ∈ V (Th). Then G′ has a minor isomorphic to Qh − w1w2 in such a way ξt(i)

belongs to the node of w1, ξt(j) belongs to the node of w2, and the node of each leaf of Qh

contains ξr(i) or ξr(j) for some minor vertex r at height h of Th.

Proof. We proceed by induction on h. Let t0 be the major root of Th, let (t1, t2, t3) be its

trinity, and let Li and Lj be the tripods in the η-torso at t0 as in the definition of property

Bij . The graph Li ∪ Lj contains a path P joining ξt1(i) to ξt1(j) and a path P ′ joining

ξt2(i) or ξt2(j) to P such that ξt1(i), ξt1(j) 6∈ V (P ′), which shows that the lemma holds for

h = 1.
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We may therefore assume that h > 1 and that the lemma holds for h−1. For k ∈ {2, 3}

let Rk be the subtree of Th rooted at tk, let ηk be the restriction of η to Rk, and let Gk be

the subgraph of G induced by
⋃
t0
Vt0 , where the union is taken over all major vertices

t0 ∈ V (Rk). By the induction hypothesis applied to ηk and Gk, the graph Gk has a minor

isomorphic to Qh−1 − u1u2 in such a way ξtk(i) belongs to the node of u1, ξtk(j) belongs

to the node of u2, where u1u2 is the base edge of Qh−1, and the node of each leaf of Qh−1

contains ξr(i) or ξr(j) for some minor vertex r at height h − 1 of Rk. By using these two

minors, the path P and the rest of the triads Li and Lj we find that G′ has the desired

minor.

Lemma 3.5.3. For every two positive integers k and w ≥ 2 there exists an integer h such

that the following holds. Let (T,X) be a tree-decomposition of a graph G of width less

than w and satisfying (W1)–(W7). Assume there exists a regular cascade η : Th ↪→ T of

size |I|+ s with specified linkages that are minimal, where I is its common intersection set

and 2 ≤ s ≤ w.

(i) Then G has a minor isomorphic to Pk or Qk.

(ii) If |I| ≥ 1, then G has a minor isomorphic to P ′k or Q′k.

(iii) If |I| ≥ 2, then G has a minor isomorphic to P ′′k or Q′′k.

Proof. Let h′ = 4k + 1, and let h = h(h′, w) be the number as in Lemma 3.4.6. By

Lemma 3.4.6 there exist distinct integers i, j ∈ {1, 2, . . . , s} and a weak subcascade η′ :

Th′ ↪→ T of η of height h′ such that

• every major vertex of Th′ has property Aij in η′, or

• every major vertex of Th′ has property Bij in η′

Assume that every major vertex of Th′ has property Aij in η′, and let R be the union of the

corresponding tripods, over all major vertices t ∈ V (Th′) at height at most h′−2. It follows

54



that R is the union of two disjoint trees, each containing a subtree isomorphic to T(h′−1)/2.

Let t be a minor vertex of Th′ at height h′ − 1. By Lemma 3.4.2 there exists a W6-path

with ends ξt(i) and ξt(j) in the outer graph at t. Let R1 be the union of these W6-paths for

all minor vertices t at height h′ − 1. By contracting one of the trees comprising R and by

considering R1 we deduce that G has a Pk minor, as desired. If |I| ≥ 1, assume x ∈ I . By

Lemma 3.4.2 there exists a W6-path with ends x and ξt(j) in the outer graph at t. Let R2

be the union of these W6-paths for all minor vertices t at height h′ − 1. By contracting the

tree that contains ξt(i) of R and by considering R1, R2 we deduce that G has a P ′k minor,

as desired. If |I| ≥ 2, assume x1, x2 ∈ I . By Lemma 3.4.2 there exist a W6-path with ends

x1 and ξt(j) and a W6-path with ends x2 and ξt(j) in the outer graph at t. Let R3 be the

union of these W6-paths for all minor vertices t at height h′ − 1. By contracting the tree

that contains ξt(i) of R and by considering R1, R3 we deduce that G has a P ′′k minor, as

desired.

We may therefore assume that every major vertex of Th′ has property Bij in η′. For

every major vertex t0 in Th′ let Vt0 be the vertex set of the η-torso at t0. Let G′ be the

subgraph of G induced by
⋃
t0
Vt0 , where the union is taken over all major vertices t0 ∈

V (Th) at height at most h′ − 2. It follows from Lemma 3.5.2 applied to Th−1 that G′

has a minor isomorphic to Qh′−2, as desired. Let t be a minor vertex of Th′ at height

h′ − 1. If |I| ≥ 1, assume x ∈ I . By Lemma 3.4.2 there exist a W6-path with ends

x and ξt(i) and a W6-path with ends x and ξt(j) in the outer graph at t. Let R1 be the

union of these W6-paths for all minor vertices t at height h′ − 1. By considering R1 and

the minor isomorphic to Qh′−2 in G′ we deduce that G has a Q′h′−2 minor, as desired. If

|I| ≥ 2, assume x1, x2 ∈ I . By Lemma 3.4.2 there exist W6-paths with ends a and b for

all a ∈ {x1, x2} and b ∈ {ξt(i), ξt(j)} in the outer graph at t. Let R2 be the union of

these W6-paths for all minor vertices t at height h′ − 1. By considering R2 and the minor

isomorphic to Qh′−2 in G′ we deduce that G has a Q′′h′−2 minor, as desired.

We deduce Theorem 3.5.1 from the following lemma.
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Lemma 3.5.4. Let k and w be positive integers. There exists a number p = p(k, w) such

that for every 2-connected graph G, if G has tree-width less than w and path-width at least

p, then G has a minor isomorphic to Pk or Qk.

Proof. Let h′ be as in Lemma 3.5.3 and let h = max{h′, k + 1}. Let p be as in Theo-

rem 3.3.5 applied to a = h and w. We claim that p satisfies the conclusion of the lemma.

By Theorem 3.3.5, there exists a tree-decomposition (T,X) of G such that:

• (T,X) has width less than w,

• (T,X) satisfies (W1)–(W7), and

• for some s, where 2 ≤ s ≤ w, there exists a regular cascade η : Th ↪→ T of height

h and size s in (T,X) with specified t0-linkages that are minimal for every major

vertex t0 ∈ V (Th).

Let I be the common intersection set of η, let ξt be the orderings, and let s1 = s−|I|. Then

s1 ≥ 1 by the definition of injective cascade.

Assume first that s1 = 1. Since s ≥ 2, it follows that I 6= ∅. Let x ∈ I . Let R be

the union of the left and right specified t-linkage with respect to η, over all major vertices

t ∈ V (Th) at height at most h − 2. The minimality of the specified linkages implies that

R is isomorphic to a subdivision of Th−1. Let t be a minor vertex of Th at height h − 1.

By Lemma 3.4.2 there exists a W6-path with ends ξt(1) and x and every internal vertex in

the outer graph at t. The union of R and these W6-paths shows that G has a Pk minor, as

desired.

We may therefore assume that s1 ≥ 2. By Lemma 3.5.3(i), G has a minor isomorphic

to Pk or Qk.

Proof of Theorem 3.5.1. Let a positive integer k be given. By Theorem 1.1.1 there exists

an integer w such that every graph of tree-width at least w has a minor isomorphic to Pk.

Let p = p(k, w) be as in Lemma 3.5.4. We claim that p satisfies the conclusion of the
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theorem. Indeed, let G be a 2-connected graph of path-width at least p. By Theorem 1.1.1,

if G has tree-width at least w, then G has a minor isomorphic to Pk, as desired. We may

therefore assume that the tree-width of G is less than w. By Lemma 3.5.4 G has a minor

isomorphic to Pk or Qk, as desired.
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CHAPTER 4

MINORS OF 3-CONNECTED GRAPHS OF LARGE PATH-WIDTH

4.1 Properties

Let s > 0 be an integer. Let (T,X) be a tree decomposition of a graph G, let η : Th ↪→ T

be an ordered cascade in (T,X) with size |I|+ s and orderings ξt, where I is the common

intersection set of η. Let t0 ∈ V (Th) be a major vertex, let (t1, t2, t3) be the trinity at t0, let

G′ be the η-torso at t0, and let i, j, k ∈ {1, 2, . . . , s} be distinct.

We say that t0 has property Aijk in η if there exist disjoint paths Li, Lj, Lk, Ri, Rj, Rk

in G′ and vertices yi, yj, yk, zi, zj, zk ∈ V (G′) such that the two ends of Lm are ξt1(m) and

ym for each m ∈ {i, j, k}, the two ends of Rm are ξt1(m) and zm for each m ∈ {i, j, k},

and {yi, yj, yk} = {ξt2(i), ξt2(j), ξt2(k)}, {zi, zj, zk} = {ξt3(i), ξt3(j), ξt3(k)}.

We say that t0 has property A0
ijk in η if there exist three disjoint tripods Li, Lj, Lk in G′

such that for each m ∈ {i, j, k}, the tripod Lm has feet ξt1(m), ξt2(m2), ξt3(m3) for some

m2,m3 ∈ {i, j, k}. See Figure 4.1(a).

We say that t0 has property A1
ijk in η if there exist vertices vx,y for all x ∈ {i, j, k},

y ∈ {2, 3}, and tripods Li, Lj, Lk in G′ with centers ci, cj, ck such that:

• for each y ∈ {2, 3}, {vi,y, vj,y, vk,y} = {ξty(i), ξty(j), ξty(k)}

• for each m ∈ {i, j, k}, Lm has feet ξt1(m), vm,2, vm,3

• Li∩Lj = ciLivi,3∩ cjLjvj,2 and it is a path that does not contain ci, cj . Let vh be the

vertex of this path that is closest to ch for h ∈ {i, j}.

• V (Lh ∩ Lk) ⊆ V (chLhvh)− {ch, vh} for h ∈ {i, j}

• the paths ξt1(m)Lmvm,2 for all m ∈ {i, j, k} are disjoint and the paths ξt1(m)Lmvm,3

for all m ∈ {i, j, k} are disjoint.
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See Figure 4.1(b).

We say that t0 has property A2
ijk in η if there exist vertices vx,y for all x ∈ {i, j, k},

y ∈ {2, 3}, and tripods Li, Lj, Lk in G′ with centers ci, cj, ck such that:

• for each y ∈ {2, 3}, {vi,y, vj,y, vk,y} = {ξty(i), ξty(j), ξty(k)}

• for each m ∈ {i, j, k}, Lm has feet ξt1(m), vm,2, vm,3

• Li ∩ Lk = ∅

• Lj ∩ Li = cjLjvj,2 ∩ ciLivi,3 and it is a path that does not contain ci, cj;

Lj ∩ Lk = cjLjvj,3 ∩ ckLkvk,2 and it is a path that does not contain cj, ck.

See Figure 4.1(c).

We say that t0 has property A3
ijk in η if there exist vertices vx,y for all x ∈ {i, j, k} and

y ∈ {2, 3} such that:

• for each y ∈ {2, 3}, {vi,y, vj,y, vk,y} = {ξty(i), ξty(j), ξty(k)}

• for each m ∈ {i, j, k}, Lm has feet ξt1(m), vm,2, vm,3

• Li ∩ Lk = ∅ and Lj ∩ Lk = ∅

• Li ∩ Lj = ciLivi,3 ∩ cjLjξt1(j) and it is a path that does not contain ci, cj .

• there exist three disjoint paths, each from ξt1(h) to vh,3 for h ∈ {i, j, k}.

See Figure 4.1(d).

If t0 has one of the properties above, we say that t0 has that property with ordered feet

if for all h ∈ {i, j, k}, Lh has feet ξt1(h), ξt2(h), ξt3(h).

If t0 has one of the properties above, we will denote the three tripods asLi(t0), Lj(t0), Lk(t0)

and their centers as ci(t0), cj(t0), ck(t0) when we want to emphasize they are in the η-torso

at the major vertex t0.
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(a) Property A0
ijk (b) Property A1

ijk

(c) Property A2
ijk (d) Property A3

ijk

Li Lk
Lj Li

Lj
Lk

Li LkLkLi
Lj Lj

Figure 4.1: Properties Amijk for m ∈ {0, 1, 2, 3}.

Let At0 and Bt0 be the confinement sets for η at t0. We say that t0 has property B in η

if s is even, At0 and Bt0 are disjoint and both have size s/2, and there exist disjoint paths

R1, R2, . . . , R3s/2 in G′ in such a way that

• each Ri is a subpath of both the left specified t0-linkage and the right specified t0-

linkage,

• for i ∈ At0 , the path Ri has ends ξt1(i) and ξt2(i),

• for i ∈ Bt0 the path Ri has ends ξt1(i) and ξt3(i), and

• for i = s+ 1, s+ 2, . . . , 3s/2 the path Ri has one end ξt2(k) and the other end ξt3(l)

for some k ∈ Bt0 and l ∈ At0 .

We say that t0 has property Bijk in η if there exist three paths Ri, Rj, Rij and a tripod

Rk in G′ such that they are pairwise disjoint and the ends of Ri are ξt1(i) and ξt2(i), the

ends of Rj are ξt1(j) and ξt3(j), the ends of Rij are ξt2(j) and ξt3(i), and the three feet

of Rk are ξt1(k), ξt2(k), and ξt3(k). We will denote them as Ri(t0), Rj(t0), Rij(t0), Rk(t0)

when we want to emphasize they are in the η-torso at the major vertex t0.
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Lemma 4.1.1. Let (T,X) be a tree-decomposition of a graph G. Let η : T1 ↪→ T be an

ordered cascade in (T,X) with orderings ξt of height one and size s + |I|, where I is the

common intersection set. Let t0 be the major vertex in T1, and let i, j, k ∈ {1, 2, . . . , s} be

distinct. If t0 has propertyAijk in η, then t0 has propertyAmabc in η for somem ∈ {0, 1, 2, 3}

and a, b, c such that {a, b, c} = {i, j, k}.

Proof. Assume the trinity at t0 is (t1, t2, t3). As in the definition of property Aijk, in the

η-torso at t0 there exist disjoint paths Li, Lj, Lk such that Lm has ends ξt1(m) and ym for

all m ∈ {i, j, k} and there exist disjoint paths Ri, Rj, Rk such that Rm has ends ξt1(m)

and zm for all m ∈ {i, j, k}, {yi, yj, yk} = {ξt2(i), ξt2(j), ξt2(k)}, and {zi, zj, zk} =

{ξt3(i), ξt3(j), ξt3(k)}. Let xm = ξt1(m) for all m ∈ {i, j, k}. Among all the possible

choices of such paths, choose the one such that M = |
⋃
m[E(Lm) ∪ E(Rm)]| is minimal.

Assume from zi, zj, zk the paths Ri, Rj, Rk first meet Li ∪ Lj ∪ Lk at a, b, c, respectively.

Claim 4.1.1.1. Let m,n ∈ {i, j, k}. Assume Rm meets Ln at a vertex v. Then from v, after

departing from the path Ln, vRmxm must meet Lh before Ln for some h ∈ {i, j, k} − {n}.

Proof: Assume it is not true. From v, assume vRmxm departs from Ln at a vertex

v1, and then meets Ln again before any Lh where h ∈ {i, j, k} − {n} at a vertex v2.

Assume v2 is closer to yn than v1. Let L′n = xnLnv1 ∪ v1Rmv2 ∪ v2Lnyn and L′h = Lh for

h ∈ {i, j, k}−{n}. LetG1 = L′i∪L′j∪L′k∪Ri∪Rj∪Rk andG2 = Li∪Lj∪Lk∪Ri∪Rj∪Rk.

It is clear that G1 is a subgraph of G2. In addition, there exists an edge of v1Lnv2 that is

not an edge of Ri ∪ Rj ∪ Rk. So |E(G1)| < |E(G2)| = M , contradicting the minimality

of M .

Claim 4.1.1.2. Let m,n, h, l ∈ {i, j, k} where m 6= n. Let P1 be a subpath of Rh with

two ends v1, w1 such that v1 ∈ V (Lm), w1 ∈ V (Ln) and P2 be a subpath of Rl with two

ends v2, w2 such that v2 ∈ V (Lm), w2 ∈ V (Ln). Assume P1, P2 are internally disjoint from

Li∪Lj∪Lk and P1 is disjoint from P2. Assume v1 ∈ V (v2Lmym). Then w1 ∈ V (w2Lnyn).
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Proof: Assume it is not true, then w1 ∈ V (w2Lnxn). Let L′m = xmLmv2∪P2∪w2Lnyn

and L′n = xnLnw1 ∪ P1 ∪ v1Lmym. Let r ∈ {i, j, k} − {m,n}. Let G1 = Lr ∪ L′m ∪ L′n ∪

Ri ∪ Rj ∪ Rk and G2 = Li ∪ Lj ∪ Lk ∪ Ri ∪ Rj ∪ Rk. Then G1 is a subgraph of G2. In

addition, there exists an edge of v1Lmv2 ∪w1Lnw2 that is not an edge of Ri ∪Rj ∪Rk. So

|E(G1)| < |E(G2)| =M , a contradiction.

Claim 4.1.1.3. Let m,n, p ∈ {i, j, k} where n 6= p. Assume Rm meets Ln at a vertex v.

From v, assume after departing from Ln, the path vRmxm meets Lp and after departing

from Lp, it meets Ln again at a vertex w. Then there exist u ∈ {a, b, c} and h ∈ {i, j, k} −

{m} such that u ∈ V (vLnw) ∩ V (Rh).

Proof: Assume it is not true. Without loss of generality, assume v ∈ V (wLnxn). As-

sume vRmw first meets Lp at v1 and departs from Lp at v2. There exist t1, t2 ∈ V (vLnw)∩

V (Rm) such that t1Lnt2 is internally disjoint from Rm, otherwise Rm will contain a cy-

cle. If V (vLnw) ∩ V (
⋃
l∈{i,j,k}−{m}Rl) = ∅, then by changing t1Rmt2 by t1Lnt2, we can

reduce M , a contradiction. So there exists a vertex v3 ∈ V (vLnw) ∩ V (Rm1) for some

m1 ∈ {i, j, k} − {m}. Assume from v3 the path v3Rm1xm1 departs Ln at a vertex v4. By

Claim 4.1.1.1, from v4 the path v4Rm1xm1 must meet Lh1 at a vertex v5 before meeting Ln

again for some h1 ∈ {i, j, k} − {n}. Assume from v3 the path v3Rm1zm1 departs from Ln

at a vertex v6. Since m1 6= m, v6 6∈ {a, b, c}, so v6Rm1zm1 must meet Li ∪ Lj ∪ Lk. By

Claim 4.1.1.1, v6Rm1zm1 must meet Lh2 at a vertex v7 before meeting Ln again for some

h2 ∈ {i, j, k} − {n}. By Claim 4.1.1.2, h1 6= p and h2 6= p, so h1 = h2 = r, where r ∈

{i, j, k}−{n, p}. Assume v5 ∈ V (xrLrv7). As above, V (v5Lrv7)∩V (Ri∪Rj ∪Rk) 6= ∅.

Let v8 ∈ V (v5Lrv7)∩V (Rm2) for somem2 ∈ {i, j, k}. From v8, assume v8Rm2xm2 departs

from Lr at a vertex v9. From v9 the path v9Rm2xm2 must meet Lh3 at a vertex v10 before

meeting Lr again for some h3 ∈ {i, j, k} − {r}. By Claim 4.1.1.2, h3 6= n, so h3 = p. If

v10 ∈ V (xpLpv1), letL′r = xrLrv5∪v5Rm1v4∪v4Lnyn, L′p = xpLpv10∪v10Rm2v9∪v9Lryr,

and L′n = xnLnv ∪ vRmv1 ∪ v1Lpyp, then these paths together with Ri, Rj, Rk show that
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M is not minimal. If v10 ∈ V (v2Lpyp), then let L′r = xrLrv9 ∪ v9Rm2v10 ∪ v10Lpyp, L′p =

xpLpv2 ∪ v2Rmw ∪ wLnyn, and L′n = xnLnv6 ∪ v6Rm1v7 ∪ v7Lryr then we also have M

is not minimal, a contradiction.

Back to the proof of the lemma, if no two of a, b, c lie on the same path in Li, Lj, Lk,

then it is clear that t0 has property A0
ijk in η. So consider two cases:

Case 1: all of a, b, c lie on some path in Li, Lj, Lk. Without loss of generality, assume

they all lie on Lj such that b ∈ V (aLjxj) and c ∈ V (bLjxj). From b the path bRjxj

must depart from Lj at a vertex b1. From b1 the path b1Rjxj must meet Li or Lk before

meeting Lj again. Assume from b1 the path b1Rjxj meets Li at a vertex b2. From a the

path aRixi must depart from Lj at a vertex a1. From a1 the path a1Rixi must meet Li or Lk

before meeting Lj again. If from a1 the path a1Rixi meets Lk before Li or Lj , then t0 has

property A1
kji. So assume from a1 the path a1Rixi meets Li before Lj or Lk at a vertex a2.

By Claim 4.1.1.2, a2 ∈ V (b2Liyi). From a2 the path a2Rixi must depart from Li at a vertex

a3. From a3 the path a3Rixi must meet Lj or Lk before meeting Li again. If from a3 the

path a3Rixi meets Lk before Li or Lj , then t0 also has property A1
kji. So assume from a3

the path a3Rixi meets Lj before Li or Lk at a vertex a4. By Claim 4.1.1.2, a4 ∈ V (bLjyj).

By Claim 4.1.1.3, this cannot happen.

Case 2: exactly two of a, b, c lie on some path in Li, Lj, Lk. Without loss of generality,

assume that a and b lie on Lj and c lies on Lk and a ∈ V (bLjyj). Because b 6∈ V (Ri),

from a the path aRixi must depart from Lj at some vertex a1. If a1Rixi meets Li before

Lj or Lk, then t0 has property A1
ijk. The path a1Rixi cannot meet Lj before Li or Lk by

Claim 4.1.1.1. So assume from a1 the path a1Rixi meets Lk before Li or Lj at a vertex a2.

Assume first a2 ∈ V (cLkxk). Because a2 6∈ V (Rk), from c the path cRkxk must depart

from Lk at some vertex c1. If c1Rkxk meets Li before Lj or Lk, then t0 has property A2
ikj .

The path c1Rkxk cannot meet Lk before Li or Lj because of Claim 4.1.1.1. So assume

c1Rkxk meets Lj before Li or Lk at a vertex c2. By Claim 4.1.1.2, c2 ∈ V (aLjyj). Because

a 6∈ V (c2Rkxk), from c2 the path c2Rkxk must depart from Lj at some vertex c3. From
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c3 the path c3Rkxk cannot meet Lj before Li or Lk because of Claim 4.1.1.1. If c3Rkxk

meets Li before Lj or Lk at a vertex c4, then the tripods T1 = Li∪ c4Rkc3∪ c3Lja∪ aRizi,

T2 = Lj ∪ bRjzj , and T3 = Lk ∪ cRkzk show that t0 has property A1
ijk. So assume c3Rkxk

meets Lk before Li or Lj at a vertex c4. Because a, b 6∈ V (c1Lkc4), by Claim 4.1.1.3, this

cannot happen. Now assume a2 ∈ V (cLkyk). From a2 the path a2Rixi must depart from

Lk at a vertex a3. From a3 if a3Rixi meets Li before Lj or Lk, then t0 has property A1
kji.

From a3 the path a3Rixi cannot meet Lk before Li or Lj , so assume it meets Lj at a vertex

a4 before Li or Lk. By Claim 4.1.1.3, a4 6∈ V (bLjyj). So a4 ∈ V (bLjxj). Then from b

the path bRjxj must depart from Lj at a vertex b1. From b1 the path b1Rjxj cannot meet

Lj again before Li or Lk. If from b1 the path b1Rjxj meets Li before Lj or Lk, then t0

has property A3
ijk. From b1 the path b1Rjxj cannot meet Lk before Li or Lj because of

Claim 4.1.1.2.

4.2 Main lemma

Lemma 4.2.1. Let s ≥ 3 be an integer. Let (T,X) be a tree decomposition of a graph G

satisfying (W6), and let η : T5 ↪→ T be a regular cascade in (T,X) of size |I| + s with

specified linkages that are minimal, where I is the common intersection set of η. Then there

exists a weak subcascade η′ : T1 ↪→ T of η of height one such that in η′ the unique major

vertex of T1 has property Aijk for some distinct integers i, j, k ∈ {1, 2, . . . , s}, or the major

root of T5 has property B in η.

Proof. We will either construct a weakly monotone homeomorphic embedding γ : T1 ↪→

T5 such that in η′ = η ◦ γ the major root of T1 will have property Aijk for some distinct

integers i, j, k ∈ {1, 2, . . . , s}, or establish that the major root of T5 has property B in η.

Since η is regular, there exist sets A,B,C,D as in the definition of a regular cascade.

Let t0 be the unique major vertex of T1 and let (t1, t2, t3) be its trinity. Let u0 be the major

root of T5 and let (v1, v2, v3) to be its trinity. Let u1, u2 be the major vertices of T5 of height

one such that u1 is adjacent to v2 and u2 is adjacent to v3. Let (v2, v4, v5) be the trinity at
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u1 and (v3, v6, v7) be the trinity at u2. Let u3, u4 be the major vertices of T5 of height two

such that u3 is adjacent to v4 and u4 is adjacent to v6. Let (v4, v8, v9) be the trinity at u3

and (v6, v10, v11) be the trinity at u4. Let u5, u6 be the major vertices of T5 of height three

such that u5 is adjacent to v8 and u6 is adjacent to v10. Let (v8, v12, v13) be the trinity at u5

and (v10, v14, v15) be the trinity at u6.

Let us recall that for a major vertex u of T5 we denote the paths in the specified left u-

linkage by Pi(u) and the paths in the specified right u-linkage by Qi(u). If there exist three

distinct integers i, j, k ∈ A∩B, then the paths Pi(u0), Pj(u0), Pk(u0), Qi(u0), Qj(u0), Qk(u0)

show that u0 has property Aijk in η. Let γ : T1 ↪→ T5 be the homeomorphic embedding

that maps t0, t1, t2, t3 to u0, v1, v2, v3, respectively. Then η′ = η ◦ γ is as desired. We may

therefore assume that |A ∩B| ≤ 2.

For i ∈ {1, 2, . . . , s} − A the path Pi(u0) exits and re-enters the η-torso at u0, and it

does so through two distinct vertices of Xη(v3)− I . But |Xη(v3)− I| = s, hence |A| ≥ s/2.

Similarly |B| ≥ s/2. Let a be a major vertex with trinity (a1, a2, a3). The set C includes

an element of the form (i, l,m), which means that the vertices ξa1(i), ξa3(l), ξa3(m), ξa2(i)

appear on the path Pi(a) in the order listed. Let li := l,mi := m, xi(a) := ξa3(l), yi(a) :=

ξa3(m), Xi(a) := ξa1(i)Pi(a)xi(a) and Yi(a) := yi(a)Pi(a)ξa2(i). Thus Xi(a) and Yi(a)

are subpaths of the η-torso at a. Similarly, the set D includes an element of the form

(i, n, r), which means that the vertices ξa1(i), ξa2(n), ξa2(r), ξa3(i) appear on the pathQi(a)

in the order listed. Let ni := n, ri := r, wi(a) := ξa2(n), zi(a) := ξa2(r), Wi(a) :=

ξa1(i)Qi(a)wi(a) and Zi(a) := zi(a)Qi(a)ξa3(i). We distinguish three main cases.

Main case 1: |A∩B| = 2. Assume A∩B = {i, j}. Assume B−A = ∅, then B = {i, j}.

Let k ∈ {1, ..., s}\B. Let γ(t0) = u0, γ(t1) = v1.

Consider the following cases depending on nk and rk. If nk, rk ∈ B (so they are

also in A), let γ(t2) = v4, Eh = Ph(u1) for all h ∈ {i, j, k}, and let L be the union of

Wk(u0) ∪ Qnk
(u1) and Qrk(u1) ∪ Zk(u0) and a W6-path in the outer graph at v5 joining

their ends by Lemma 3.4.2. If at least one of nk, rk is not in B, let γ(t2) = v5 and Eh =
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Qh(u1) for all h ∈ {i, j, k}. If nk, rk 6∈ B, let L be the union of Wk(u0) ∪Wnk
(u1) and

Wrk(u1) ∪ Zk(u0) and a W6-path in the outer graph at v4 joining their ends by Lemma

3.4.2. If nk ∈ B and rk 6∈ B, let L be the union ofWk(u0)∪Pnk
(u1) andWrk(u1)∪Zk(u0)

and a W6-path in the outer graph at v4 joining their ends by Lemma 3.4.2. If nk 6∈ B and

rk ∈ B, let L be the union of Wk(u0) ∪Wnk
(u1) and Prk(u1) ∪ Zk(u0) and a W6-path in

the outer graph at v4 joining their ends by Lemma 3.4.2.

If k ∈ A then we let γ(t3) = v3, Fi = Fj = Fk = ∅ and R = Pk(u0). If k 6∈ A

then we consider the following cases depending on lk and mk. If lk,mk ∈ B, let γ(t3) =

v6, Fh = Ph(u2) for all h ∈ {i, j, k}, and let R be the union of Xk(u0) ∪ Qlk(u2) and

Qmk
(u2)∪Yk(u0) and aW6-path in the outer graph at v7 joining their ends by Lemma 3.4.2.

If at least one of lk,mk is not in B, let γ(t3) = v7 and Fh = Qh(u2) for all h ∈ {i, j, k}. If

lk,mk 6∈ B, let R be the union of Xk(u0)∪Wlk(u2) and Wmk
(u2)∪Yk(u0) and a W6-path

in the outer graph at v6 joining their ends by Lemma 3.4.2. If lk ∈ B and mk 6∈ B, let R

be the union of Xk(u0)∪ Plk(u2) and Wmk
(u2)∪ Yk(u0) and a W6-path in the outer graph

at v6 joining their ends by Lemma 3.4.2. If lk 6∈ B and mk ∈ B, let R be the union of

Xk(u0) ∪Wlk(u2) and Pmk
(u2) ∪ Yk(u0) and a W6-path in the outer graph at v6 joining

their ends by Lemma 3.4.2.

Let L′ be a subpath of L with the same ends and R′ be a subpath of R with the same

ends. Then the unique major vertex of T1 has property Aijk in η′ = η ◦γ with the first triple

of disjoint paths being R′ ∪ Ek and Ph(u0) ∪ Eh for all h ∈ {i, j}, and the second triple

being L′ ∪ Fk and Qh(u0) ∪ Fh for all h ∈ {i, j}.

Now assume B − A 6= ∅. Select an element k ∈ B − A. Let γ(t0) = u0, γ(t1) =

v1, γ(t2) = v2.

If lk ∈ A or lk 6∈ B, let γ(t3) = v7 and Fh = Qh(u2) for h ∈ {i, j, k}. If lk ∈ A, let

M1 = Plk(u2). If lk 6∈ B, let M1 = Wlk(u2). If mk ∈ B, let M2 = Yk(u2) ∪ Qmk
(u2). If

mk 6∈ B, let M2 = Wmk
(u2). Let R be the union of M1 and M2 and a W6-path in the outer

graph at v6 joining their ends by Lemma 3.4.2. If lk ∈ B and mk 6∈ A− B, let γ(t3) = v6
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and Fh = Ph(u2) for all h ∈ {i, j, k}. Let M1 = Qlk(u2). If mk 6∈ A let M2 = Xmk
(u2). If

mk ∈ B let M2 = Qmk
(u2). Let R be the union of M1 and M2 and a W6-path in the outer

graph at v7 joining their ends by Lemma 3.4.2. If lk ∈ B−A and mk ∈ A−B, let γ(t3) =

v15 and Fh = Ph(u2)∪Ph(u4)∪Qh(u6) for all h ∈ {i, j, k}. Let M1 = Plk(u2)∪Xlk(u4),

M2 = Qj(u4) ∪ Pj(u4) ∪ Pj(u6) and M3 = Pmk
(u2) ∪ Pmk

(u4) ∪ Pmk
(u6). Let R be the

union of M1, M2, M3, a W6-path in the outer graph at v11 joining the ends of M1 and M2,

and a W6-path in the outer graph at v14 joining the ends of M2 and M3 by Lemma 3.4.2.

Then the unique major vertex of T1 has property Aijk in η′ = η ◦ γ with the first triple

of disjoint paths being Ph(u0) for all h ∈ {i, j} and a path between ξv1(k) and ξv2(k) that

is a subgraph of Xk(u0) ∪ R ∪ Yk(u0), and the second triple being Qh(u0) ∪ Fh for all

h ∈ {i, j, k}.

Main case 2: |A∩B| = 1. Let j be the unique element of A∩B. Notice that A−B 6= ∅.

In fact, if A−B = ∅, then |A| = 1. So 2(s− 1) ≤ s and this means s ≤ 2, a contradiction.

Similarly, B − A 6= ∅. Therefore, we can let i ∈ A − B and k ∈ B − A. Let γ(t0) =

u0, γ(t1) = v1.

If ni ∈ B or ni 6∈ A, let γ(t2) = v4 and Eh = Ph(u1) for all h ∈ {i, j, k}. If ni ∈ B,

let M1 = Qni
(u1). If ni 6∈ A, let M1 = Xni

(u1). If ri ∈ A, let M2 = Zi(u1) ∪ Pri(u1). If

ri 6∈ A, let M2 = Xri(u1). Let L be the union of M1 and M2 and a W6-path in the outer

graph at v5 joining their ends by Lemma 3.4.2. If ni ∈ A and ri 6∈ B − A, let γ(t2) = v5

and Eh = Qh(u1) for all h ∈ {i, j, k}. Let M1 = Pni
(u1). If ri 6∈ B let M2 = Wri(u1).

If ri ∈ A let M2 = Pri(u1). Let L be the union of M1 and M2 and a W6-path in the outer

graph at v4 joining their ends by Lemma 3.4.2. If ni ∈ A−B and ri ∈ B−A, let γ(t2) = v13

and Eh = Ph(u1) ∪ Ph(u3) ∪ Qh(u5) for all h ∈ {i, j, k}. Let M1 = Pri(u1) ∪ Xri(u3),

M2 = Qj(u3) ∪ Pj(u3) ∪ Pj(u5) and M3 = Pni
(u1) ∪ Pni

(u3) ∪ Pni
(u5). Let L be the

union of M1, M2, M3, a W6-path in the outer graph at v9 joining the ends of M1 and M2,

and a W6-path in the outer graph at v12 joining the ends of M2 and M3 by Lemma 3.4.2.

If lk ∈ A or lk 6∈ B, let γ(t3) = v7 and Fh = Qh(u2) for all h ∈ {i, j, k}. If lk ∈ A, let
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M1 = Plk(u2). If lk 6∈ B, let M1 = Wlk(u2). If mk ∈ B, let M2 = Yk(u2) ∪ Qmk
(u2). If

mk 6∈ B, let M2 = Wmk
(u2). Let R be the union of M1 and M2 and a W6-path in the outer

graph at v6 joining their ends by Lemma 3.4.2. If lk ∈ B and mk 6∈ A− B, let γ(t3) = v6

and Fh = Ph(u2) for all h ∈ {i, j, k}. Let M1 = Qlk(u2). If mk 6∈ A let M2 = Xmk
(u2). If

mk ∈ B let M2 = Qmk
(u2). Let R be the union of M1 and M2 and a W6-path in the outer

graph at v7 joining their ends by Lemma 3.4.2. If lk ∈ B−A and mk ∈ A−B, let γ(t3) =

v15 and Fh = Ph(u2)∪Ph(u4)∪Qh(u6) for all h ∈ {i, j, k}. Let M1 = Plk(u2)∪Xlk(u4),

M2 = Qj(u4) ∪ Pj(u4) ∪ Pj(u6) and M3 = Pmk
(u2) ∪ Pmk

(u4) ∪ Pmk
(u6). Let R be the

union of M1, M2, M3, a W6-path in the outer graph at v11 joining the ends of M1 and M2,

and a W6-path in the outer graph at v14 joining the ends of M2 and M3 by Lemma 3.4.2.

Let L′ be a subpath of L with the same ends and R′ be a subpath of R with the same

ends. Then the unique major vertex of T1 has property Aijk in η′ = η ◦γ with the first triple

of disjoint paths being Ph(u0) ∪ Eh for all h ∈ {i, j} and Xk(u0) ∪ R ∪ Yk(u0) ∪ Ek, and

the second triple being Qh(u0) ∪ Fh for all h ∈ {j, k} and Wi(u0) ∪ L ∪ Zi(u0) ∪ Fi.

Main case 3: A ∩B = ∅. It follows that s is even and |A| = |B| = s/2. Assume as a case

that for some integer i ∈ B either li,mi ∈ A or li,mi ∈ B and for some k ∈ A, nk, rk ∈ A

or nk, rk ∈ B. But the integers li,mi are pairwise distinct, and so if li,mi ∈ A, then there

exists j ∈ B such that lj,mj ∈ B, and similarly if li,mi ∈ B. We may therefore assume

that there exist k ∈ A and i, j ∈ B such that nk, rk ∈ A, li,mi ∈ A and lj,mj ∈ B. We let

γ map t0, t1, t2, t3 to u0, v1, v5, v11, respectively, and we will prove that t0 has property Aijk

in η′. To that end we need to construct two triples of disjoint paths. The first two paths of

the first triple are Qi(u0) ∪ Pi(u2) ∪Qi(u4) and Qj(u0) ∪ Pj(u2) ∪Qj(u4). The third path

of the first triple is the union of Wk(u0)∪Pnk
(u1) and Prk(u1)∪Zk(u0)∪Pk(u2)∪Qk(u4)

and a suitable W6-path in the outer graph at v4 joining their ends by Lemma 3.4.2. The

first path of the second triple is Pk(u0) ∪ Qk(u1). The second path of the second triple is

the union of Xi(u0) ∪ Pli(u2) ∪ Pli(u4) and Qi(u1) ∪ Yi(u0) ∪ Pmi
(u2) ∪ Pmi

(u4) and a

suitable W6-path in the outer graph at v10 joining their ends by Lemma 3.4.2. The third
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path of the second triple is the union of Xj(u0) ∪Xlj(u2) and Qj(u1) ∪ Yj(u0) ∪Xmj
(u2)

and a suitable W6-path in the outer a graph at v7 joining their ends by Lemma 3.4.2. This

completes the case that for some integer i ∈ B either li,mi ∈ A or li,mi ∈ B and for some

integer k ∈ A either nk, rk ∈ A or nk, rk ∈ B.

We may therefore assume that for every i ∈ B one of li,mi belongs to A and the other

belongs to B, or for every k ∈ A one of nk, rk belongs to A and the other belongs to

B. Without loss of generality, assume that for every i ∈ B one of li,mi belongs to A

and the other belongs to B. For every i ∈ B a subpath of Pi(u0) joins ξv3(li) to ξv3(mi)

in the outer graph at v3 and is disjoint from the η-torso at u0, except for its ends. Let J

be the union of these subpaths; then J is a linkage from {ξv3(i) : i ∈ A} to {ξv3(i) :

i ∈ B}. For i ∈ B the path Qi(u0) is a subgraph of the η-torso at u0. It follows that

J ∪ (
⋃
i∈B Qi(u0))∪ (

⋃
i∈A Zi(u0))∪ (

⋃
i∈AWi(u0)) is a linkage from Xη(v1) to Xη(v2), and

so by the minimality of the specified linkages it is equal to the specified left u0-linkage. It

follows that u0 has property B in η.

4.3 Reduced properties

Similarly to the 2-connected case, we have the following result:

Lemma 4.3.1. Let (T,X) be a tree-decomposition of a graph G, let η : Th ↪→ T be an

ordered cascade in (T,X) with orderings ξt, specified linkages and common intersection

set I , let γ : Th′ ↪→ Th be a monotone homeomorphic embedding, and let η′ := η ◦ γ :

Th′ ↪→ T be a subcascade of η of height h′. Then for every major vertex t0 ∈ V (Th′)

(i) η′ is an ordered cascade with orderings ξγ(t) and common intersection set I ,

(ii) if the vertex γ(t0) has property Amijk (or Bijk, resp.) in η, then t0 has property Amijk

(or Bijk, resp.) in η′.

Furthermore, the specified linkages for η′ may be chosen in such a way that

(iii) (At0 , Bt0 , Ct0 , Dt0) = (Aγ(t0), Bγ(t0), Cγ(t0), Dγ(t0)),
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(iv) the vertex t0 has property B in η′ if and only if γ(t0) has property B in η, and

(v) if the specified linkages for η are minimal, then the specified linkages for η′ are

minimal.

Lemma 4.3.2. There exists a positive integer h such that the following holds. Let s ≥

3 be an integer and let (T,X) be a tree-decomposition of a graph G. Let η : Th ↪→

T be an ordered cascade in (T,X) of height h and size |I| + s with orderings ξt and

common intersection set I such that there exist some distinct i, j, k ∈ {1, 2, . . . , s} and

m ∈ {0, 1, 2, 3} such that every major vertex of Th has property Amijk. Then there exists a

weak subcascade η′ : T1 ↪→ T of η of height one such that the unique major vertex of T1

has property Amijk with ordered feet in η′.

Proof. Let h(a, k) be the function of Lemma 3.3.2. Let h = h(3, (3!)2). Assume u is an

arbitrary major vertex of Th and its trinity is (v1, v2, v3). Assume the feet of Li, Lj, Lk

in Xη(v2) are x1, x2, x3 and the feet of Li, Lj, Lk in Xη(v3) are x4, x5, x6. Then for every

major vertex u of Th, consider the tuple (x1, x2, x3, x4, x5, x6) as its color. By Lemma

3.3.2, there exists a monotone homeomorphic embedding γ : T3 ↪→ Th such that γ(t) has

the same tuple of six feet for every major vertex t ∈ V (T3). Let η1 = η ◦ γ : T3 ↪→ T .

By Lemma 4.3.1, η1 is still an ordered cascade where every major vertex t ∈ V (T3) has

property Amijk. Also, t has the same tuple of six feet for every major vertex t ∈ V (T3).

Let u be a major vertex in T3 and let (v1, v2, v3) be its trinity. Let xi, xj, xk be the feet

of Li(u), Lj(u), Lk(u) in Xη1(v1), respectively. Let f, g be functions such that f(xl) are

the feet of Ll(u) in Xη1(v2) and g(xl) are the feet of Ll(u) in Xη1(v3) for all l ∈ {i, j, k}.

Define f0(x) = f(x) and fn(x) = f(fn−1(x)) for n ≥ 1, and g0(x) = g(x) and gn(x) =

g(gn−1(x)) for n ≥ 1.

Assume t0 is a major root of T1 and its trinity is (t1, t2, t3). Let u0 be the major root of

T3 and its trinity be (v, v1, w1). Let γ1(t0) = u0 and γ1(t1) = v. For l ∈ {1, 2}, let ui be

the child of vi and vi+1 be the left child of ui, and let ri be the child of wi and wi+1 be the
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right child of ri. Let xi, xj, xk be the feet of Li(u0), Lj(u0), Lk(u0) in Xη(v). Then there

exist l1, l2 ∈ {1, 2, 3} such that fl1(x) = x and gl2(x) = x for all x ∈ {xi, xj, xk}. Let

γ1(t2) = vl1 ,γ1(t3) = wl2 , and η′ = η1 ◦ γ1. For l ∈ {i, j, k}, let

Ll = Ll(u0) ∪
( ⋃
1≤n<l1

fn(xl)Ll(un)fn+1(xl)
)
∪
( ⋃
1≤n<l2

gn(xl)Pl(rn)gn+1(xl)
)
,

where gn(xl)Pl(rn)gn+1(xl) = gn(xl)Ll(rn)gn+1(xl) whenm 6= 3, otherwise gn(xl)Pl(rn)gn+1(xl)

for all l ∈ {i, j, k} are three disjoint paths as in the definition of property A3
ijk. Then these

tripods show that η′ is as desired.

Lemma 4.3.3. Let s ≥ 3 be an integer and let (T,X) be a tree-decomposition of a graph

G satisfying (W6). Let η : T2 ↪→ T be an ordered cascade in (T,X) of height two and

size |I| + s with orderings ξt and common intersection set I such that there exist distinct

i, j, k ∈ {1, 2, . . . , s} such that every major vertex of T2 has property A2
ijk with ordered

feet. Then there exists a weak subcascade η′ : T1 ↪→ T of η of height one such that the

unique major vertex of T1 has property A1
ikj in η′ with ordered feet.

Proof. Assume that the major root of T2 is u0 and its trinity is (v1, v2, v3). Let u1 be the

major vertex at height one that is adjacent to v2 and let v4 be its left child. Let the major root

of T1 be t0 and its trinity be (t1, t2, t3). Let γ(t0) = u0, γ(t1) = v1, γ(t2) = v4, γ(t3) = v3.

Then η′ = η ◦ γ is as desired. Let a be the end of Lj(u0) ∩ Lk(u0) that is closest to ξv3(j),

b be the end of Lj(u1) ∩ Lk(u1) that is closest to cj(u1), c be the end of Li(u1) ∩ Lj(u1)

that is closest to ci(u1), and d be the end of Li(u0) ∩ Lj(u0) that is closest to ξv3(i). Let

Li = ξv1(i)Li(u0)ξv2(i) ∪ ξv2(i)Li(u1)ξv4(i) ∪ ξv3(j)Lj(u0)a ∪ aLk(u0)ξv2(k)∪

∪ ξv2(k)Lk(u1)b ∪ bLj(u1)cj(u1) ∪ cj(u1)Lj(u1)c ∪ cLi(u1)ci(u1),

Lj = ξv1(j)Lj(u0)ξv2(j) ∪ ξv2(j)Lj(u1)ξv4(j) ∪ ξv3(i)Li(u0)d,
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and

Lk = Lk(u0) ∪ ξv2(k)Lk(u1)ξv4(k),

then they are the tripods needed for property A1
ikj in η′.

Lemma 4.3.4. Let s ≥ 3 be an integer and let (T,X) be a tree-decomposition of a graph

G. Let η : T2 ↪→ T be an ordered cascade in (T,X) of height two and size |I| + s

with orderings ξt and common intersection set I such that there exist distinct i, j, k ∈

{1, 2, . . . , s} such that every major vertex of T2 has property A3
ijk with ordered feet. Then

there exists a weak subcascade η′ : T1 ↪→ T of η of height one such that the unique major

vertex of T1 has property A1
ijk in η′.

Proof. Assume that the major root of T2 is u0 and its trinity is (v1, v2, v3). Let u1 be the

major vertex at height one that is adjacent to v2 and let v4 be its left child. Let the major

root of T1 be t0 and its trinity be (t1, t2, t3). Let γ(t0) = u0, γ(t1) = v1, γ(t2) = v4,

γ(t3) = v3. Then η′ = η ◦ γ is as desired. Assume a is the end of Li(u0) ∩ Lj(u0) that is

closest to ξv3(i), and b is the end of Li(u1) ∩ Lj(u1) that is closest to ci(u1). Let

Li = ξv1(i)Li(u0)ξv2(i) ∪ ξv2(i)Li(u1)ξv4(i) ∪ ξv3(j)Lj(u0)cj(u0) ∪ cj(u0)Lj(u0)ξv2(j)∪

∪ ξv2(j)Lj(u1)b ∪ bLi(u1)ci(u1),

Lj = ξv1(j)Lj(u0)ξv2(j) ∪ ξv2(j)Lj(u1)ξv4(j) ∪ ξv3(i)Li(u0)a,

and

Lk = Lk(u0) ∪ ξv2(k)Lk(u1)ξv4(k),

then they are the tripods needed for property A1
ijk in η′.

Lemma 4.3.5. For every integer s ≥ 3 there exists a positive integer h such that the

following holds. Let (T,X) be a tree-decomposition of a graph G satisfying (W6) and

(W7). Let η : Th ↪→ T be a regular cascade in (T,X) of height h and size |I| + s with
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orderings ξt and common intersection set I such that every major vertex of Th has property

B. Then there exists a weak subcascade η′ : T1 ↪→ T of η of height one and distinct

i, j, k ∈ {1, 2, ..., s} such that the unique major vertex of T1 has property Bijk in η′.

Proof. Let h be as in Lemma 3.3.2 applied to a = 3 and k = (s/2)2 + 2(s/2)3. Let the

common confinement sets for η be A,B,C,D. Let the major root of T1 be t0 and its trinity

be (t1, t2, t3). Let the major root of T2 be u0 and its trinity be (w1, w2, w3). Let two major

vertices at height one of T2 be u1 and u2. Assume the trinity at u1 is (w2, w4, w5) and the

trinity at u2 is (w3, w6, w7).

For a major vertex w ∈ V (Th) with trinity (v1, v2, v3) there are disjoint paths in the

η-torso at w as in the definition of property B. For a ∈ A and b ∈ B let Ra(w) denote the

path with ends ξv1(a) and ξv2(a), let Rb(w) denote the path with ends ξv1(b) and ξv3(b), and

let Rab(w) denote the path with ends ξv2(b) and ξv3(a).

Let I be the common intersection set of η. Then η(v1), η(v2), η(v3) is a triad in T with

center η(w) and for all i ∈ {1, 2, 3} we have Xη(vi)∩Xη(w) = I = Xη(v1)∩Xη(v2)∩Xη(v3),

and hence the triad is not X-separable. By (W7) there is a path R(w) connecting two of

the three sets of disjoint paths in the η-torso at w.

If R(w) goes from Ra(w) to Rb(w) for a ∈ A and b ∈ B, we say it w has color (a, b).

If R(w) goes from Ra(w) to Rcb for a ∈ A or a ∈ B and b ∈ B, c ∈ A, we say w has color

(a, cb). By Lemma 3.3.2, there exists a monotone homeomorphic embedding γ : T3 ↪→ Th

and a ∈ A, b ∈ B such that γ(t) has color (a, b) in η for every major vertex t ∈ V (T3), or

there exists a monotone homeomorphic embedding γ : T3 ↪→ Th and a ∈ A or a ∈ B and

b ∈ B, c ∈ A such that γ(t) has color (a, cb) in η for every major vertex t ∈ V (T3).

Assume there exists a monotone homeomorphic embedding γ : T3 ↪→ Th and a ∈

A, b ∈ B such that γ(t) has color (a, b) in η for every major vertex t ∈ V (T3). Let

η1 = η ◦ γ, then by Lemma 4.3.1, t has property B in η1 for every major vertex t ∈ V (T3)

and one end of R(t) is in the path Ra(t) and the other end is in Rb(t). Let γ1(t0) =

u0, γ1(t1) = w1, γ1(t2) = w4, and γ1(t3) = w6. Let η′ = η1 ◦ γ1. Let c ∈ A − {a} and
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d ∈ B − {b}. Let x1 ∈ B be such that Rcx1(u0) is a member of the family of the disjoint

paths in the η-torso at u0 as in the definition of property B, x2 ∈ A be such that Rx2d(u1)

is a member of the family of the disjoint paths in the η-torso at u1 as in the definition of

property B, and x3 ∈ A be such that Rx3d(u2) is a member of the family of the disjoint

paths in the η-torso at u2 as in the definition of property B. Let y be the end of R(u0) in

the path Rb(u0), z be the end of R(u2) in the path Rb(u2), and r be the end of R(u2) in the

path Ra(u2). Let Rc = Rc(u0)∪Rc(u1), Rd be the union of Rd(u0)∪Rd(u2) and Rx3d(u2)

and a W6-path in the outer graph at w7 joining their ends, Rcd be the union of Rx2d(u1) and

Rx1(u1) ∪ Rcx1(u0) ∪ Rc(u2) and a W6-path in the outer graph at w5 connecting the ends

of these two paths, and Ra = Ra(u0)∪Ra(u1)∪R(u0)∪yRb(u0)ξw3(b)∪ ξw3(b)Rb(u1)z∪

R(u2) ∪ rRa(u2)ξw6(a), then these paths and tripod show that t0 has property Bcda in η′,

so η′ is as desired. See Figure 4.2.

Xη(w1)

ξw2(x1)
ξw3(c)

ξw5(x2)ξw4(d) ξw7(x3)ξw6(d)

y

ξw3(a)
z

r

Rc(u0)

Ra(u0)
R(u0)

Rd(u0)

Rc(u1)

Figure 4.2: γ(t) has color (a, b) in η for every t ∈ V (T3).

Therefore we can assume there exists a monotone homeomorphic embedding γ : T3 ↪→

Th and a ∈ A or a ∈ B and b ∈ B, c ∈ A such that γ(t) has color (a, cb) in η for every

major vertex t ∈ V (T3). Without loss of generality, assume a ∈ A. Let η1 = η ◦ γ, then

by Lemma 4.3.1, t has property B in η1 for every major vertex t ∈ V (T3) and one end of

R(t) is in the path Ra(t) and the other end is in Rcb(t). Let d ∈ B − {b}. If a = c then let

e ∈ A−{a} such that Red(u0) is a member of the family of the disjoint paths in the η-torso

at u0 as in the definition of property B. Let γ1(t0) = u0 and γ1(tl) = wl for all l ∈ {1, 2, 3},
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then t0 has property Beda in η′ = η1 ◦ γ1, so η′ is as desired. Therefore assume a 6= c. Let

x1 ∈ B be such that Rax1(u2) is a member of the family of the disjoint paths in the η-torso

at u2 as in the definition of property B. Let f ∈ B be such that Raf (u0) is a member of

the family of the disjoint paths in the η-torso at u0 as in the definition of property B. Then

x1 6= b and f 6= b because a 6= c. Let y be the end ofR(u0) in the pathRcb(u0), z be the end

ofR(u2) in the pathRa(u2), and r be the end ofR(u2) in the pathRcb(u2). Let γ1(t0) = u0,

γ1(tl) = wl for all l ∈ {1, 2}, and γ1(t3) = w7. Let η′ = η1 ◦ γ1. Let Rc = Rc(u0),

Rf = Rf (u0) ∪ Rf (u2), Rcf = Raf (u0) ∪ ξw3(a)Ra(u2)z ∪ R(u2) ∪ rRcb(u2)ξw7(c), and

Ra be the union of Ra(u0)∪R(u0)∪yRcb(u0)ξw3(c)∪Rc(u2) and Rax1(u2) and a W6-path

in the outer graph at w6 connecting the ends of these two paths, then they show that t0 has

property Bcfa in η′. See Figure 4.3. Hence η′ is as desired.

Xη(w1)

ξw2(f) ξw3(c)

ξw7(a)ξw6(x1)

ξw3(a)

Rc(u0) Ra(u0)
R(u0)

Rf (u0)

ξw2
(b)

y

z
r

Rf (u2)R(u2)

Figure 4.3: γ(t) has color (a, cb) in η for every t ∈ V (T3).

Lemma 4.3.6. For every positive integers h′ and w ≥ 3 there exists a positive integer

h = h(h′, w) such that the following holds. Let s be a positive integer such that 3 ≤ s ≤ w.

Let (T,X) be a tree-decomposition of a graph G of width less than w and satisfying (W6)-

(W7). Assume there exists a regular cascade η : Th ↪→ T of size |I| + s with specified

linkages that are minimal, where I is its common intersection set. Then there exist distinct

integers i, j, k ∈ {1, 2, . . . , s} and a weak subcascade η′ : Th′ ↪→ T of η of height h′ such

that
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• every major vertex of Th′ has property A0
ijk with ordered feet in η′, or

• every major vertex of Th′ has property A1
ijk with ordered feet in η′

• every major vertex of Th′ has property Bijk in η′

Proof. Let h(a, k) be the function of Lemma 3.3.2. Let h1 be h in Lemma 4.3.2 and h2 be

h in Lemma 4.3.5. Let a4 = 2h′, a3 = h1a4, a2 = h(a3, 12
(
w
3

)
), a1 = max{5a2, h2a2}

and h = h(a1, 2). Consider having property B or not having property B as colors, then by

Lemma 3.3.2 there exists a monotone homeomorphic embedding γ : Ta1 ↪→ Th such that

either γ(t) has property B in η for every major vertex t ∈ V (Ta1) or γ(t) does not have

property B in η for every major vertex t ∈ V (Ta1). By Lemma 4.3.1 η1 = η ◦ γ : Ta1 ↪→ T

is still a regular cascade with specified linkages that are minimal. Also, either t has property

B in η1 for every major vertex t ∈ V (Ta1) or t does not have property B in η1 for every

major vertex t ∈ V (Ta1).

If t has property B in η1 for every major vertex t ∈ V (Ta1), then by Lemma 4.3.5 there

exists a weak subcascade η2 of η1 of height a2 such that every major vertex of Ta2 has

property Bijk in η2 for some distinct i, j, k ∈ {1, 2, ..., s}. Consider each choice of tuple

(i, j, k) as a color; then by Lemma 3.3.2 there exists a monotone homeomorphic embedding

γ1 : Ta3 ↪→ Ta2 such that for some distinct i, j, k ∈ {1, 2, ..., s}, γ1(t) has property Bijk in

η2 for every major vertex t ∈ V (Ta3). Let η3 = η2 ◦ γ1. Then by Lemma 4.3.1 this implies

t has property Bijk in η3 for every major vertex t ∈ V (Ta3). Hence η3 is as desired.

If t does not have property B in η1 for every major vertex t ∈ V (Ta1), then by Lemma 4.2.1

there exists a weak subcascade η2 of η1 of height a2 such that every major vertex of Ta2

has property Aijk for some distinct i, j, k ∈ {1, 2, ..., s}. By Lemma 4.1.1, every major

vertex of Ta2 has property Amijk for some distinct i, j, k ∈ {1, 2, ..., s} and m ∈ {0, 1, 2, 3}.

Consider each property Amijk as a color; then by Lemma 3.3.2 there exists a monotone

homeomorphic embedding γ1 : Ta3 ↪→ Ta2 such that for some distinct i, j, k ∈ {1, 2, ..., s}

and m ∈ {0, 1, 2, 3}, γ1(t) has property Amijk in η2 for every major vertex t ∈ V (Ta3).
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Let η3 = η2 ◦ γ1, then t has property Amijk in η3 for every major vertex t ∈ V (Ta3) by

Lemma 4.3.1. By Lemma 4.3.2, there exists a weak subcascade η4 of η3 of height a4 such

that every major vertex of Ta4 has property Amijk with ordered feet. If m ∈ {0, 1}, then η4

is as desired. If m = 2 (or m = 3, resp.), then by Lemma 4.3.3 (or Lemma 4.3.4, resp.),

there exists a weak subcascade η5 of η4 of height h′ such that every major vertex of Th′ has

property Amijk with ordered feet. Then η5 is as desired.

4.4 Proof of Theorem 1.1.5

Lemma 4.4.1. If a graph H has two distinct vertices u, v such that H\{u, v} is a forest,

then there exists an integer n such that H is isomorphic to a minor of P ′n.

Proof. Let u and v be such that T := H\{u, v} is a forest. We may assume, by replacing

H by a graph with an H minor, that T is isomorphic to CTt for some t, and that each of

u, v is adjacent to every vertex of T . It follows that H is isomorphic to a minor of P ′2t, as

desired.

Lemma 4.4.2. Let H be a graph with a vertex v such that H\{v} is an outerplanar graph.

Then there exists an integer n such that H is isomorphic to a minor of Q′n.

Proof. By Lemma 3.1.4, there exists an integer t such that H\{v} is isomorphic to a minor

of Qt. We may assume, by replacing H by a graph with an H minor, that H\{v} is

isomorphic to Qt for some t, and that v is adjacent to every vertex of Qt. It follows that H

is isomorphic to a minor of Q′t+2.

Lemma 4.4.3. Let H be a tree with a cycle going through its leaves in order from the

leftmost leaf to the rightmost leaf. Then there exists an integer n such that H is isomorphic

to a minor ofR′n.

Proof. Let T be the tree inH and C be the cycle going through its leaves. We may assume,

by replacing H by a graph with an H minor, that T is isomorphic to CTt for some t, and
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thatC goes through its leaves in order from the leftmost leaf to the rightmost leaf. It follows

that H is isomorphic to a minor ofR′t, as desired.

By Lemmas 4.4.1, 4.4.2 and 4.4.3 Theorem 1.1.5 is equivalent to the following theorem.

Theorem 4.4.4. For every positive integer n, there exists a number p = p(n) such that

every 3-connected graph with path-width at least p has P ′n,Q′n orR′n as a minor.

Lemma 4.4.5. For every two positive integers n and w ≥ 3 there exists an integer h such

that the following holds. Let (T,X) be a tree-decomposition of a graph G of width less

than w and satisfying (W1)–(W7). Assume there exists a regular cascade η : Th ↪→ T of

size |I|+ s with specified linkages that are minimal, where I is its common intersection set

and 3 ≤ s ≤ w. Then

(i) G has a minor isomorphic to P ′n orR′n.

(ii) If |I| ≥ 1, then G has a minor isomorphic to P ′′n orR′′n.

Proof. Let h′ = 4n + 1, and let h = h(h′, w) be the number as in Lemma 4.3.6. By

Lemma 4.3.6 there exist distinct integers i, j, k ∈ {1, 2, . . . , s} and a weak subcascade

η′ : Th′ ↪→ T of η of height h′ such that

• every major vertex of Th′ has property A0
ijk with ordered feet in η′, or

• every major vertex of Th′ has property A1
ijk with ordered feet in η′

• every major vertex of Th′ has property Bijk in η′

Assume that every major vertex of Th′ has property A0
ijk with ordered feet in η′, and let R

be the union of the corresponding tripods, over all major vertices t ∈ V (Th′) at height at

most h′ − 2. It follows that R is the union of three disjoint trees, each containing a subtree

isomorphic to T(h′−1)/2. Let t be a minor vertex of Th′ at height h′ − 1. By Lemma 3.4.2

there exist a W6-path with ends ξt(i) and ξt(k) and a W6-path with ends ξt(j) and ξt(k)

in the outer graph at t. Let R1 be the union of these W6-paths for all minor vertices t at
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height h′ − 1. By contracting the tree that contains ξt(i) and the tree that contains ξt(j),

and by considering the remaining tree and R1 we deduce that G has a P ′n minor, as desired.

If |I| ≥ 1, assume x ∈ I . By Lemma 3.4.2 there exists a W6-path with ends x and ξt(k) in

the outer graph at t. Let R2 be the union of these W6-paths for all minor vertices t at height

h′ − 1. By contracting the tree that contains ξt(i) and the tree that contains ξt(j), and by

considering the remaining tree and R1, R2 we deduce that G has a P ′′n minor, as desired.

Assume next that every major vertex of Th′ has property A1
ijk with ordered feet in η′.

Let the major root of Th′ be u0 and its left child be v. For every major vertex u that is a

descendant of v, let Li(u), Lj(u), Lk(u) be the three tripods in the η′-torso at u as in the

definition of propertyA1
ijk, and let a(u), b(u) be the two ends of the path Li(u)∩Lj(u). Let

R1 =
⋃
u

(ξv1(i)Li(u)ξv2(i) ∪ ξv1(j)Lj(u)ξv3(j)∪

∪ ξv2(j)Lj(u)a(u) ∪ a(u)Lj(u)b(u) ∪ b(u)Li(u)ξv3(i)),

and

R2 =
⋃
u

Lk(u),

where the unions are taken over all major vertices u at height at most h′ − 2 that are

descendants of v and (v1, v2, v3) here is the trinity at u. Then R1 is disjoint from R2, which

is a tree isomorphic to a subdivision of Th′−2. Let t be a minor vertex of Th′ at height h′−1.

By Lemma 3.4.2 there exist a W6-path with ends ξt(i) and ξt(k) and a W6-path with ends

ξt(j) and ξt(k) in the outer graph at t. Let R3 be the union of these W6-paths for all minor

vertices t at height h′ − 1. By Lemma 3.4.2, there exists a W6-path P with ends ξv(i) and

ξv(j) in the subgraph of G induced by
⋃
Xr − I , where the union is taken over all r in the

component containing η′(u0) of T − η′(v). By considering R1, R2, R3 and P we deduce

that G has a R′h′−3 minor, as desired. If |I| ≥ 1, assume x ∈ I . By Lemma 3.4.2 there

exists a W6-path with ends x and ξt(k) in the outer graph at t. Let R4 be the union of these

W6-paths for all minor vertices t at height h′− 1. By considering R1, R2, R3, P and R4 we
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deduce that G has aR′′n minor, as desired.

We may therefore assume that every major vertex of Th′ has property Bijk in η′. For

every major vertex u in Th′ , let Ri(u), Rj(u), Rij(u) and Rk(u) be as in the definition of

property Bijk. Let the major root of Th′ be u0 and its left child be v. Let

R1 =
⋃
u

(
Ri(u) ∪Rj(u) ∪Rij(u)

)
and R2 =

⋃
u

Rk(u),

where the unions are taken over all major vertices u at height at most h′ − 2 that are

descendants of v. Then R1 is disjoint from R2, which is a tree isomorphic to a subdivision

of Th′−2. By considering R1, R2 and W6-paths as in the above case, we deduce that G also

has aR′h′−3 minor and aR′′n minor if |I| ≥ 1, as desired.

Lemma 4.4.6. Let n and w be positive integers. There exists a number p = p(n,w) such

that for every 3-connected graph G, if G has tree-width less than w and path-width at least

p, then G has a minor isomorphic to P ′n,Q′n orR′n.

Proof. Let h1 be as in Lemma 3.5.3 applied to k = n and w. Let h2 be as in Lemma 4.4.5.

Let h = max{h1, h2, n + 2}. Let p be as in Theorem 3.3.5 applied to a = h and w. By

Theorem 3.3.5, there exists a tree-decomposition (T,X) of G such that:

• (T,X) has width less than w,

• (T,X) satisfies (W1)–(W7), and

• for some s, where 3 ≤ s ≤ w, there exists a regular cascade η : Th ↪→ T of height

h and size s in (T,X) with specified t0-linkages that are minimal for every major

vertex t0 ∈ V (Th).

Let I be the common intersection set of η, let ξt be the orderings, and let s1 = s−|I|. Then

s1 ≥ 1 by the definition of injective cascade.

Assume that s1 = 1. Since s ≥ 3, it follows that |I| ≥ 2. Let x, y ∈ I . Let R be

the union of the left and right specified t-linkage with respect to η, over all major vertices
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t ∈ V (Th) at height at most h− 2. The minimality of the specified linkages implies that R

is isomorphic to a subdivision of Th−1. Let t be a minor vertex of Th at height h − 1. By

Lemma 3.4.2 there exist a W6-path with ends ξt(1) and x and a W6-path with ends ξt(1)

and y in the outer graph at t. The union of R and these W6-paths shows that G has a P ′n

minor, as desired.

Assume that s1 = 2. Since s ≥ 3, it follows that I 6= ∅. By Lemma 3.5.3(ii), G has a

P ′n minor or a Q′n minor, as desired.

We may therefore assume that s1 ≥ 3. By Lemma 4.4.5(i), G has a minor isomorphic

to P ′n orR′n, as desired.

Proof of Theorem 4.4.4. Let a positive integer n be given. By Theorem 1.1.1 there exists

an integer w such that every graph of tree-width at least w has a minor isomorphic to Q′n.

Let p = p(n,w) be as in Lemma 4.4.6. We claim that p satisfies the conclusion of the

theorem. Indeed, let G be a 3-connected graph of path-width at least p. By Theorem 1.1.1,

if G has tree-width at least w, then G has a minor isomorphic to Q′n, as desired. We may

therefore assume that the tree-width of G is less than w. By Lemma 4.4.6 G has a minor

isomorphic to P ′n,Q′n orR′n, as desired.
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CHAPTER 5

MINORS OF 4-CONNECTED GRAPHS OF LARGE PATH-WIDTH

5.1 Properties

Let s > 0 be an integer. Let (T,X) be a tree decomposition of a graph G, let η : Th ↪→ T

be an ordered cascade in (T,X) with size |I|+ s and orderings ξt, where I is the common

intersection set of η. Let t0 ∈ V (Th) be a major vertex, let (t1, t2, t3) be the trinity at t0, let

G′ be the η-torso at t0, and let i, j, k ∈ {1, 2, . . . , s} be distinct.

We say that t0 has propertyAijkl in η if there exist disjoint pathsLi, Lj, Lk, Ll, Ri, Rj, Rk, Rl

in G′ and vertices yi, yj, yk, yl, zi, zj, zk, zl ∈ V (G′) such that the two ends of Lm are

ξt1(m) and ym for each m ∈ {i, j, k, l}, the two ends of Rm are ξt1(m) and zm for

each m ∈ {i, j, k, l}, and {yi, yj, yk, yl} = {ξt2(i), ξt2(j), ξt2(k), ξt2(l)}, {zi, zj, zk, zl} =

{ξt3(i), ξt3(j), ξt3(k), ξt3(l)}.

We say that t0 has property A0
ijkl in η if there exist three disjoint tripods Li, Lj, Lk, Ll

in G′ such that for each m ∈ {i, j, k, l}, the tripod Lm has feet ξt1(m), ξt2(m2), ξt3(m3) for

some m2,m3 ∈ {i, j, k, l}.

We say that t0 has property A1
ijkl in η if there exist vertices vx,y for all x ∈ {i, j, k, l},

y ∈ {2, 3}, and tripods Li, Lj, Lk, Ll in G′ with centers ci, cj, ck, cl such that:

• for each y ∈ {2, 3}, {vi,y, vj,y, vk,y, vl,y} = {ξty(i), ξty(j), ξty(k), ξty(l)}

• for each m ∈ {i, j, k, l}, Lm has feet ξt1(m), vm,2, vm,3

• Li ∩ Ll = ciLivi,3 ∩ clLlvl,2 and is a path that does not contain ci, cl. Let vh be the

vertex of this path that is closest to ch for h ∈ {i, l}

• Lj ∩ Lk = cjLjvj,3 ∩ ckLkvk,2 and is an empty set or a path that does not contain

cj, ck
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• V (Lh1 ∩ Lh2) ⊆ V (ch1Lh1vh1)− {ch1 , vh1} for all h1 ∈ {i, l} and h2 ∈ {j, k}

• the paths ξt1(m)Lmvm,2 for allm ∈ {i, j, k, l} are disjoint and the paths ξt1(m)Lmvm,3

for all m ∈ {i, j, k, l} are disjoint.

See Figure 5.1(a).

We say that t0 has property A1a
ijkl in η if t0 has property A1

ijkl with Lj ∩Lk = ∅. We say

that t0 has property A1b
ijkl in η if t0 has property A1

ijkl with Lj ∩ Lk 6= ∅.

If t0 has one of the properties above, we say that t0 has that property with ordered feet

if for all h ∈ {i, j, k, l}, Lh has feet ξt1(h), ξt2(h), ξt3(h).

We say that t0 has property A2
ijkl in η if there exist vertices vx,y for all x ∈ {i, j, k, l},

y ∈ {2, 3}, and tripods Lj, Lk, Ll in G′ with centers cj, ck, cl and disjoint paths Li, Ri such

that:

• for each y ∈ {2, 3}, {vi,y, vj,y, vk,y, vl,y} = {ξty(i), ξty(j), ξty(k), ξty(l)}

• for each m ∈ {j, k, l}, Lm has feet ξt1(m), vm,2, vm,3

• Li has ends ξt1(i) and vi,2 and Ri has vi,3 as one end and ci as the other end, where

ci ∈ V (clLlvl,2)− {cl}

• Li is disjoint from Lj ∪ Lk ∪ Ll ∪Ri and Ri is internally disjoint from Lj ∪ Lk ∪ Ll

• Lj ∩ Lk = cjLjvj,3 ∩ ckLkvk,2 and is an empty set or a path that does not contain

cj, ck

• V (Lh ∩ Ll) ⊆ (chLhvh,3 ∩ V (clLlci))− {ci, ch, cl} for all h ∈ {j, k}.

See Figure 5.1(b).

We say that t0 has property A3
ijkl in η if there exist vertices vx,y for all x ∈ {i, j, k, l},

y ∈ {2, 3}, and tripods Lj, Lk, Ll in G′ with centers cj, ck, cl and disjoint paths Li, Ri such

that:

• for each y ∈ {2, 3}, {vi,y, vj,y, vk,y, vl,y} = {ξty(i), ξty(j), ξty(k), ξty(l)}
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• for each m ∈ {j, k, l}, Lm has feet ξt1(m), vm,2, vm,3

• Li has ends ξt1(i) and vi,2 and Ri has vi,3 as one end and ci as the other end, where

ci ∈ V (ckLkvk,2)− {ck}

• Li is disjoint from Lj ∪ Lk ∪ Ll ∪ Ri and Ri is internally disjoint from Lj ∪ Lk ∪

ξv1(l)Llξv3(l)

• Lj ∩ Lk = cjLjvj,3 ∩ ckLkci and is an empty set or a path that does not contain

ci, cj, ck

• Lj ∩ Ll = cjLjvj,3 ∩ clLlvl,2 and is a path P1 that does not contain cj, cl

• Ri ∩ clLlvl,2 is empty set or a path P2 that does not contain ci, cl

• Lk ∩ Ll = ckLkvk,3 ∩ clLlvl,2 and is an empty set or a path P3 that does not contain

ck, cl

• vl,2, P1, P2, P3, vl,1, lie on vl,2Llvl,1 in that order.

See Figure 5.1(c).

We say that t0 has property A4
ijkl in η if there exist vertices vx,y for all x ∈ {i, j, k, l},

y ∈ {2, 3}, and tripods Lj, Lk, Ll in G′ with centers cj, ck, cl and disjoint paths Li, Ri such

that:

• for each y ∈ {2, 3}, {vi,y, vj,y, vk,y, vl,y} = {ξty(i), ξty(j), ξty(k), ξty(l)}

• for each m ∈ {j, k, l}, Lm has feet ξt1(m), vm,2, vm,3

• Li has ends ξt1(i) and vi,2 and Ri has vi,3 as one end and ci as the other end, where

ci ∈ V (ckLkvk,2)− {ck}

• Li is disjoint from Lj ∪ Lk ∪ Ll ∪Ri and Ri is internally disjoint from Lj ∪ Lk ∪ Ll

• Lj ∩ Lk = cjLjvj,3 ∩ ckLkci and is a path that does not contain ci, cj, ck
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• Lj ∩ Ll = ∅

• Lk ∩ Ll = ckLkvk,3 ∩ clLlvl,2 and is a path that does not contain ck, cl.

See Figure 5.1(d).

If t0 has property A2
ijkl, A

3
ijkl or A4

ijkl, we say that t0 has that property with ordered

left-feet if for all h ∈ {j, k, l}, Lh has feet ξt2(h) in Xη(t2).

If t0 has one of the properties above, we will denote the three tripods asLi(t0), Lj(t0), Lk(t0)

and their centers as ci(t0), cj(t0), ck(t0) when we want to emphasize they are in the η-torso

at the major vertex t0.

(a) Property A1
ijkl (b) Property A2

ijkl

(c) Property A3
ijkl (d) Property A4

ijkl

Li Ll
Lj Lk Li Ll

Lj Lk

Li Ll
Lj Lk Li Ll

Lj Lk

Ri

Ri

Ri

Figure 5.1: Properties Amijkl for m ∈ {1, 2, 3, 4}.

Let At0 and Bt0 be the confinement sets for η at t0. We say that t0 has property B in η

if s is even, At0 and Bt0 are disjoint and both have size s/2, and there exist disjoint paths

R1, R2, . . . , R3s/2 in G′, disjoint paths Y1, Y2, ..., Ys/2 and Z1, Z2, ..., Zs/2 not in G′, and a

bijective function g from At0 to Bt0 in such a way that

• each Ri is a subpath of both the left specified t0-linkage and the right specified t0-

linkage,

• for i ∈ At0 , the path Ri has ends ξt1(i) and ξt2(i),
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• for i ∈ Bt0 the path Ri has ends ξt1(i) and ξt3(i),

• for i = s + 1, s + 2, . . . , 3s/2 the path Ri has one end ξt2(g(k)) and the other end

ξt3(k) for some k ∈ At0 ,

• for i ∈ At0 , the path Yi has ends ξt2(i) and ξt2(g(i)), and

• for i ∈ At0 , the path Zi has ends ξt3(i) and ξt3(g(i)).

We say that t0 has property Bijkl in η if there exist pairwise disjoint paths Ri, Rj, Rk,

Rl, Rij, Rkl and a path R in G′ and disjoint paths Yi, Yk, Zi, Zk not in G′ such that

• the ends of Rh are ξt1(h) and ξt2(h) for h ∈ {i, k}

• the ends of Rh are ξt1(h) and ξt3(h) for h ∈ {j, l}

• the ends of Rij are ξt2(j) and ξt3(i)

• the ends of Rkl are ξt2(l) and ξt3(k)

• the ends of Yi are ξt2(i) and ξt2(j)

• the ends of Yk are ξt2(k) and ξt2(l)

• the ends of Zi are ξt3(i) and ξt3(j)

• the ends of Zk are ξt3(k) and ξt3(l)

• R is internally disjoint from the remaining paths and connects two of the three paths

Ri, Rj and Rij .

We will denote these paths asRi(t0), Rj(t0), Rk(t0), Rl(t0), Rij(t0), Rkl(t0), R(t0), Yi(t0),

Yk(t0), Zi(t0), Zk(t0) when we want to emphasize they are in the η-torso at the major vertex

t0.

We say that t0 has property B1
ijkl in η if there exist tripods Li, Lj and disjoint paths

Rk, Rl, Rkl in G′ such that
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• the ends of Rk are ξt1(k) and ξt2(k)

• the ends of Rl are ξt1(l) and ξt3(l)

• the ends of Rkl are ξt2(l) and ξt3(k)

• the feet of Lh are ξt1(h), ξt2(h), ξt3(h) for h ∈ {i, j}

• Rh is disjoint from Lm for all h ∈ {i, j} and m ∈ {k, l, kl}

• Li ∩ Lj = ciLiξt3(i) ∩ cjLjξt2(j) and is a path that does not contain ci, cj , where ch

is the center of Lh for all h ∈ {i, j}.

We will denote these paths and tripods as Li(t0), Lj(t0), Rk(t0), Rl(t0), Rkl(t0) when we

want to emphasize they are in the η-torso at the major vertex t0.

Lemma 5.1.1. Let (T,X) be a tree-decomposition of a graph G. Let η : T1 ↪→ T be an

ordered cascade in (T,X) with orderings ξt of height one and size s + |I|, where I is the

common intersection set. Let t0 be the major vertex in T1, and let i, j, k, l ∈ {1, 2, . . . , s}

be distinct. If t0 has property Aijkl in η, then t0 has property Ami′j′k′l′ in η for some m ∈

{0, 1, 2, 3, 4} and i′, j′, k′, l′ such that {i′, j′, k′, l′} = {i, j, k, l}.

Proof. Assume the trinity at t0 is (t1, t2, t3). As in the definition of property Aijkl, in

the η-torso at t0 there exist disjoint paths Li, Lj, Lk, Ll such that Lm has ends ξt1(m) and

ym for all m ∈ {i, j, k, l} and there exist disjoint paths Ri, Rj, Rk, Rl such that Rm has

ends ξt1(m) and zm for all m ∈ {i, j, k, l}, {yi, yj, yk, yl} = {ξt2(i), ξt2(j), ξt2(k), ξt2(l)},

and {zi, zj, zk, zl} = {ξt3(i), ξt3(j), ξt3(k), ξt3(l)}. Let xm = ξt1(m) for allm ∈ {i, j, k, l}.

Among all the possible choices of such paths, choose the one such thatM = |
⋃
m[E(Lm)∪

E(Rm)]| is minimal. Assume from zi, zj, zk, zl the paths Ri, Rj, Rk, Rl first meet
⋃
m Lm

at a, b, c, d, respectively. We will use the following two facts in the proof of a similar lemma

in the 3-connected case.
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Claim 5.1.1.1. Let m,n ∈ {i, j, k, l}. Assume Rm meets Ln at a vertex v. Then from v,

after departing from the pathLn, vRmxm must meetLh beforeLn for some h ∈ {i, j, k, l}−

{n}.

Claim 5.1.1.2. Let m,n, h1, h2 ∈ {i, j, k, l} where m 6= n. Let P1 be a subpath of Rh1

with two ends v1, w1 such that v1 ∈ V (Lm), w1 ∈ V (Ln) and P2 be a subpath of Rh2

with two ends v2, w2 such that v2 ∈ V (Lm), w2 ∈ V (Ln). Assume P1, P2 are internally

disjoint from Li ∪Lj ∪Lk ∪Ll and P1 is disjoint from P2. Assume v1 ∈ V (v2Lmym). Then

w1 ∈ V (w2Lnyn).

Back to the proof of the lemma, if no two of a, b, c, d lie on the same path inLi, Lj, Lk, Ll,

then it is clear that t0 has property A0
ijkl in η. So consider three cases:

Case 1: all of a, b, c, d lie on some path in Li, Lj, Lk, Ll. Without loss of generality,

assume they all lie on Ll such that yl, a, b, c, d, xl lie on Ll in that order. Assume from a, b, c

the paths aLixi, bLjxj, cLkxk departs from Ll at a1, b1, c1, respectively. By Claim 5.1.1.1,

from a1, b1, c1 the paths aLixi, bLjxj, cLkxk cannot meet Ll again before Li ∪ Lj ∪ Lk.

So assume from a1, b1, c1 the paths a1Lixi, b1Ljxj, c1Lkxk meet Li ∪ Lj ∪ Lk at a2, b2, c2,

respectively. Without loss of generality assume c2 ∈ V (Lk). If b2 ∈ V (Lh) for some

h ∈ {i, j}, then t0 has property A2
ijkl. So assume b2 ∈ V (Lj). Then there must be a path P

with two ends x, y such that P is internally disjoint from
⋃
m∈{i,j,k,l} Lm and x ∈ V (Lh) for

some h ∈ {i, j} and y ∈ V (xkLkyk ∪ xlLlyl). By Claim 5.1.1.2, y ∈ V (c2Lkyk ∪ c1Llyl).

If y ∈ V (c2Lkyk) or y ∈ V (c1Lla), then t0 has property A1
ijkl. So assume y ∈ V (aLlyl).

Then t0 has property A3
ijkl.

Case 2: three of a, b, c, d lie on some path in Li, Lj, Lk, Ll. Without loss of generality,

assume that a, b, c lie on Ll and d lies on Lk such that yl, a, b, c, xl lie on Ll in that order.

Assume from a, b the paths aLixi, bLjxj departs from Ll at a1, b1, respectively, and from

a1, b1 the paths a1Lixi, b1Ljxj first meet Li∪Lj ∪Lk at a2, b2, respectively. If b2 ∈ V (Li),

then t0 has property A2
jikl. If b2 ∈ V (Lj), then t0 has property A2

ijkl. If b2 ∈ V (Lk),
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then there must be a path P with two ends x, y such that P is internally disjoint from⋃
m∈{i,j,k,l} Lm and x ∈ V (Lh) for some h ∈ {i, j} and y ∈ V (xkLkyk ∪ xlLlyl). By

Claim 5.1.1.2, y ∈ V (b2Lkyk ∪ b1Llyl). If y ∈ V (b2Lkyk), then t0 has property A2
ijkl. If

y ∈ V (b1Llyl), then t0 has property A3
ijkl.

Case 3: two of a, b, c, d lie on some path in Li, Lj, Lk, Ll. Without loss of generality,

assume that a, b lie on Ll such that yl, a, b, xl lie on Ll in that order. If c, d do not lie

on the same path in Li, Lj, Lk, Ll, without loss of generality assume c lies on Lk and d

lies on Lj . Then t0 has property A2
ijkl. Therefore assume c, d lie on the same path Lk

such that yk, c, d, xk lie on Lk in that order. Assume from a, c the paths aLixi, cLkxk

departs from Ll, Lk at a1, c1, respectively, and from a1, c1 the paths a1Lixi, c1Lkxk first

meet Li ∪ Lj ∪ Lk, Li ∪ Lk ∪ Ll at a2, c2, respectively. If a2 ∈ V (Li ∪ Lj), then t0 has

propertyA2
ijkl orA2

jikl. If c2 ∈ V (Li∪Lj), then t0 has propertyA2
ijlk orA2

jilk. Hence assume

a2 ∈ V (Lk) and c2 ∈ V (Ll). Without loss of generality, assume a2 ∈ V (xkLkc) because

if a2 ∈ V (cLkyk) then c2 ∈ V (xlLla) by Claim 5.1.1.2. There exists a path P with two

ends x, y such that P is internally disjoint from
⋃
m∈{i,j,k,l} Lm and x ∈ V (Lh) for some

h ∈ {i, j} and y ∈ V (xkLkyk ∪ xlLlyl). By Claim 5.1.1.2, y ∈ V (a2Lkyk ∪ a1Llyl). If

y ∈ V (dLkyk), then t0 has property A2
ijkl or A2

jikl. If y ∈ V (a1Llyl), then t0 has property

A2
ijlk orA2

jilk. If a2 ∈ V (xkLkd) and y ∈ V (a2Lkd), then t0 has propertyA4
ijkl orA4

jikl.

5.2 Main lemma

Lemma 5.2.1. Let s ≥ 4 be an integer. Let (T,X) be a tree decomposition of a graph G

satisfying (W6), and let η : T7 ↪→ T be a regular cascade in (T,X) of size |I| + s with

specified linkages that are minimal, where I is the common intersection set of η. Then either

there exists a weak subcascade η′ : T1 ↪→ T of η of height one such that in η′ the unique

major vertex of T1 has property Aijkl for some distinct integers i, j, k, l ∈ {1, 2, . . . , s} or

the major root of T7 has property B in η.

Proof. We will either construct a weakly monotone homeomorphic embedding γ : T1 ↪→
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T7 such that in η′ = η ◦ γ the major root of T1 will have property Aijk for some distinct

integers i, j, k ∈ {1, 2, . . . , s}, or establish that the major root of T7 has property B in η.

Since η is regular, there exist sets A,B,C,D as in the definition of a regular cascade.

Let t0 be the unique major vertex of T1 and let (t1, t2, t3) be its trinity. Let u0 be the major

root of T7 and let (v1, v2, v3) to be its trinity. Let u1, u2 be the major vertices of T7 of height

one such that u1 is adjacent to v2 and u2 is adjacent to v3. Let (v2, v4, v5) be the trinity at

u1 and (v3, v6, v7) be the trinity at u2. Let u3, u4 be the major vertices of T7 of height two

such that u3 is adjacent to v4 and u4 is adjacent to v6. Let (v4, v8, v9) be the trinity at u3 and

(v6, v10, v11) be the trinity at u4.

Let us recall that for a major vertex u of T7 we denote the paths in the specified left u-

linkage by Pi(u) and the paths in the specified right u-linkage by Qi(u). If there exist three

distinct integers i, j, k, l ∈ A ∩ B, then the paths Ph(u0) and Qh(u0) for h ∈ {i, j, k, l}

show that u0 has property Aijkl in η. Let γ : T1 ↪→ T7 be the homeomorphic embedding

that maps t0, t1, t2, t3 to u0, v1, v2, v3, respectively. Then η′ = η ◦ γ is as desired. We may

therefore assume that |A ∩B| ≤ 3.

For i ∈ {1, 2, . . . , s} − A the path Pi(u0) exits and re-enters the η-torso at u0, and it

does so through two distinct vertices of Xη(v3)− I . But |Xη(v3)− I| = s, hence |A| ≥ s/2.

Similarly |B| ≥ s/2. Let a be a major vertex with trinity (a1, a2, a3). The set C includes

an element of the form (i, l,m), which means that the vertices ξa1(i), ξa3(l), ξa3(m), ξa2(i)

appear on the path Pi(a) in the order listed. Let li := l,mi := m, xi(a) := ξa3(l), yi(a) :=

ξa3(m), Xi(a) := ξa1(i)Pi(a)xi(a) and Yi(a) := yi(a)Pi(a)ξa2(i). Thus Xi(a) and Yi(a)

are subpaths of the η-torso at a. Similarly, the set D includes an element of the form

(i, n, r), which means that the vertices ξa1(i), ξa2(n), ξa2(r), ξa3(i) appear on the pathQi(a)

in the order listed. Let ni := n, ri := r, wi(a) := ξa2(n), zi(a) := ξa2(r), Wi(a) :=

ξa1(i)Qi(a)wi(a) and Zi(a) := zi(a)Qi(a)ξa3(i).

For any minor vertex w in T7, let Sw be the vertex set of the outer graph at w.

Claim 5.2.1.1. Assume |A ∩B| ≥ 1. Let distinct a, b ∈ {1, 2, ..., s}. If w is a minor vertex
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of height at most three in T7, then there exists a path P between ξw(a) and ξw(b) in G and

a descendant v of w such that v is a minor vertex of T7 and internal vertices of P are in

Sw − Sv.

To prove the claim let the child of w be z, and the trinity at z be (w,w1, w2). If a, b ∈ A,

let v = w2 and P be the union of M1 and M2 and a W6-path in the outer graph at w1

joining their ends, where M1 = Pa(z) and M2 = Pb(z). If a, b ∈ B, let v = w1 and P be

the union of M1 and M2 and a W6-path in the outer graph at w2 joining their ends, where

M1 = Qa(z) and M2 = Qb(z). If one of a, b is not in A ∪ B, without loss of generality,

assume a 6∈ A ∪B. If b 6∈ A ∪B, then let v = w2 and P be the union of M1 and M2 and a

W6-path in the outer graph at w1 joining their ends, where M1 = Wa(z) and M2 = Wb(z).

If b ∈ A ∪ B, without loss of generality, assume b ∈ A. Then let v = w2 and P be the

union of M1 and M2 and a W6-path in the outer graph at w1 joining their ends, where

M1 = Wa(z) and M2 = Pb(z). Then remaining case is when a ∈ A−B and b ∈ B−A, or

a ∈ B −A and b ∈ A−B. Without loss of generality, assume a ∈ A−B and b ∈ B −A.

Let z1 be the child of w1 and its trinity be (w1, w3, w4), and let z2 be the child of w3 and

its trinity be (w3, w5, w6). Let j ∈ A ∩ B and let v = w6. Let M1 = Pb(z) ∪ Xb(z1),

M2 = Qj(z1) ∪ Pj(z1) ∪ Pj(z2) and M3 = Pa(z) ∪ Pa(z1) ∪ Pa(z2). Let P ′ be the union

of M1, M2, M3, a W6-path in the outer graph at w4 joining the ends of M1 and M2, and a

W6-path in the outer graph at w5 joining the ends of M2 and M3 by Lemma 3.4.2. Let P

be a subpath with same ends as P ′, then v and P are as desired.

Back to the main lemma, we distinguish four main cases.

Main case 1: |A ∩ B| = 3. Assume A ∩ B = {i, j, l}. Assume B − A = ∅, then

B = {i, j, l}. Let k ∈ {1, ..., s} −B. Let γ(t0) = u0, γ(t1) = v1.

Consider the following cases depending on nk and rk. If nk, rk ∈ B (so they are also

in A), let γ(t2) = v4, Eh = Ph(u1) for all h ∈ {i, j, k, l}, and let L be the union of

Wk(u0) ∪ Qnk
(u1) and Qrk(u1) ∪ Zk(u0) and a W6-path in the outer graph at v5 joining

their ends by Lemma 3.4.2. If at least one of nk, rk is not in B, let γ(t2) = v5 and Eh =
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Qh(u1) for all h ∈ {i, j, k, l}. If nk, rk 6∈ B, let L be the union of Wk(u0) ∪Wnk
(u1) and

Wrk(u1) ∪ Zk(u0) and a W6-path in the outer graph at v4 joining their ends by Lemma

3.4.2. If nk ∈ B and rk 6∈ B, let L be the union ofWk(u0)∪Pnk
(u1) andWrk(u1)∪Zk(u0)

and a W6-path in the outer graph at v4 joining their ends by Lemma 3.4.2. If nk 6∈ B and

rk ∈ B, let L be the union of Wk(u0) ∪Wnk
(u1) and Prk(u1) ∪ Zk(u0) and a W6-path in

the outer graph at v4 joining their ends by Lemma 3.4.2.

If k ∈ A then we let γ(t3) = v3, Fh = ∅ for all h ∈ {i, j, k, l} andR = Pk(u0). If k 6∈ A

then we consider the following cases depending on lk andmk. If lk,mk ∈ B, let γ(t3) = v6,

Fh = Ph(u2) for all h ∈ {i, j, k, l}, and let R be the union of Xk(u0) ∪ Qlk(u2) and

Qmk
(u2)∪Yk(u0) and aW6-path in the outer graph at v7 joining their ends by Lemma 3.4.2.

If at least one of lk,mk is not in B, let γ(t3) = v7 and Fh = Qh(u2) for all h ∈ {i, j, k, l}.

If lk,mk 6∈ B, let R be the union of Xk(u0) ∪Wlk(u2) and Wmk
(u2) ∪ Yk(u0) and a W6-

path in the outer graph at v6 joining their ends by Lemma 3.4.2. If lk ∈ B and mk 6∈ B,

let R be the union of Xk(u0) ∪ Plk(u2) and Wmk
(u2) ∪ Yk(u0) and a W6-path in the outer

graph at v6 joining their ends by Lemma 3.4.2. If lk 6∈ B and mk ∈ B, let R be the union

of Xk(u0)∪Wlk(u2) and Pmk
(u2)∪ Yk(u0) and a W6-path in the outer graph at v6 joining

their ends by Lemma 3.4.2.

Let L′ be a subpath of L with the same ends and R′ be a subpath of R with the same

ends. Then the unique major vertex of T1 has property Aijk in η′ = η ◦γ with the first triple

of disjoint paths being R′ ∪ Ek and Ph(u0) ∪ Eh for all h ∈ {i, j, l}, and the second triple

being L′ ∪ Fk and Qh(u0) ∪ Fh for all h ∈ {i, j, l}.

Now assume B − A 6= ∅. Select an element k ∈ B − A. Let γ(t0) = u0, γ(t1) =

v1, γ(t2) = v2. By Claim 5.2.1.1 for a = xk(u0), b = yk(u0) and w = v3, there exist

a descendant v of v3 and a path P between a and b such that internal vertices of P are

in Sv3 − Sv. Let γ(t3) = v and Fh be the disjoint paths from ξv3(h) to ξv(h) for all

h ∈ {i, j, k, l} constructed by specified linkages. Then the unique major vertex of T1

has property Aijk in η′ = η ◦ γ with the first triple of disjoint paths being Ph(u0) for all
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h ∈ {i, j, l} and a path between ξv1(k) and ξv2(k) that is a subgraph ofXk(u0)∪P ∪Yk(u0),

and the second triple being Qh(u0) ∪ Fh for all h ∈ {i, j, k, l}.

Main case 2: |A ∩ B| = 2. Assume A ∩ B = {j, l}. First assume A − B = ∅, then

A = {j, l} and s = 4. Let γ(t0) = u0, γ(t1) = v1. Let distinct i, k ∈ {1, ..., s} − A.

If |B| = 4, let γ(t3) = v6, Fh = Ph(u2) for all h ∈ {i, j, k, l}, and Rh = Qlh(u2) ∪

xh(u2)Ph(u2)yh(u2) ∪ Qmh
(u2) for h ∈ {i, k}. If |B| = 3, let γ(t3) = v10 and Fh =

Ph(u2) ∪ Ph(u4) for all h ∈ {i, j, k, l}. Without loss of generality, assume li 6∈ B. Let

Rk = Qlk(u2) ∪ xk(u2)Pk(u2)yk(u2) ∪ Qmk
(u2) and Ri = Wli(u2) ∪ P ∪ Zli(u2) ∪

xi(u2)Pi(u2)yi(u2) ∪ Qmi
(u2), where P is a walk that we are about to construct. If

nli , rli ∈ B, let P be the union ofQnli
andQrli

and a W6-path in the outer graph at v11 join-

ing their ends. If exactly one of nli , rli is not in B, assume nli 6∈ B. Then nli is also not in

A and rli ∈ B. Then let P be the union ofXnli
andQrli

and a W6-path in the outer graph at

v11 joining their ends. If |B| = 2, we consider two small cases. If there exist h1, h2 ∈ {i, k}

such that lh1 ,mh2 ∈ B, then there exist h3 ∈ {i, k} − {h1}, h4 ∈ {i, k} − {h2} such that

lh3 ,mh4 6∈ B. In this case let γ(t3) = v10, Fh = Ph(u2) ∪ Ph(u4) for all h ∈ {i, j, k, l},

Rh1 be the union of Qlh1
(u2) and Qmh2

(u2) and a W6-path in the outer graph at v7 joining

their ends, and Rh3 is the union of Wlh3
∪ P1 and Wmh4

∪ P2 and a W6-path in the outer

graph at v11 joining their ends, where P1 and P2 are paths that we are about to construct. If

nlh3 ∈ B, let P1 = Qnlh3
(u4), else let P1 = Xnlh3

(u4). If nmh4
∈ B, let P2 = Qnmh4

(u4),

else let P2 = Xnmh4
(u4). The remaining case is when li, lk ∈ B or mi,mk ∈ B. Then⋃

h6∈BWh(u2) ∪
⋃
h6∈B Zh(u2) ∪

⋃
h6∈A xh(u2)Ph(u2)yh(u2) ∪

⋃
h∈B Qh(u2) is a left u2-

linkage, a contradiction to the minimality of specified u2-linkages.

If |B| = 4, let γ(t2) = v2, Eh = ∅ for all h ∈ {i, j, k, l}, and Lh = Qh(u0) for

all h ∈ {i, k}. If |B| = 3, assume i ∈ B and k 6∈ B. If nk ∈ B, let P1 = Qnk
(u1),

else let P1 = Xnk
(u1). If rk ∈ B, let P2 = Qrk(u1), else let P2 = Xrk(u1). Then let

γ(t2) = v4, Eh = Ph(u1) for all h ∈ {i, j, k, l}, Li = Qi(u0), and Lk be the union of

Wk(u0) ∪ P1 and Zk(u0) ∪ P2 and a W6-path in the outer graph at v5 joining their ends. If
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|B| = 2, we consider two small cases. If there exist h1, h2 ∈ {i, k} such that nh1 , rh2 ∈ B,

then there exist h3 ∈ {i, k} − {h1}, h4 ∈ {i, k} − {h2} such that nh3 , rh4 6∈ B. In this

case let γ(t2) = v8, Eh = Ph(u1) ∪ Ph(u3) for all h ∈ {i, j, k, l}, Lh1 be the union of

Wh1(u0) ∪ Qnh1
(u1) and Zh2 ∪ Qrh2

(u1) and a W6-path in the outer graph at v5 joining

their ends, and Lh3 be the union of Wh3(u0) ∪Wnh3
∪ P1 and Zh4(u0) ∪Wrh4

∪ P2 and a

W6-path in the outer graph at v9 joining their ends, where P1 and P2 are paths that we are

about to construct. If nnh3
∈ B, let P1 = Qnnh3

(u3), else let P1 = Xnnh3
(u3). If nrh4 ∈ B,

let P2 = Qnrh4
(u3), else let P2 = Xnrh4

(u3). The remaining case is when ni, nk ∈ B or

ri, rk ∈ B. Then
⋃
h6∈AXh(u1)∪

⋃
h6∈A Yh(u1)∪

⋃
h6∈B nh(u1)Qh(u1)rh(u1)∪

⋃
h∈A Ph(u1)

is a right u1-linkage, a contradiction to the minimality of specified u1-linkages.

Let L′h be a subpath of Lh with the same ends and R′h be a subpath of Rh with the

same ends for all h ∈ {i, k}. Then the unique major vertex of T1 has property Aijkl in

η′ = η ◦ γ with the first 4-tuple of disjoint paths being Ph(u0) ∪ Eh for all h ∈ {j, l} and

Xh(u0) ∪ R′h ∪ Yh(u0) ∪ Eh for all h ∈ {i, k}, and the second 4-tuple being Qh(u0) ∪ Fh

for all h ∈ {j, l} and L′h ∪ Fh for all h ∈ {i, k}.

Therefore we can assume A−B 6= ∅ and B − A 6= ∅. Let i ∈ A−B and k ∈ B − A.

Let γ(t0) = u0, γ(t1) = v1. By Claim 5.2.1.1 for a = wi(u0), b = zi(u0) and w = v2,

there exist a descendant v of v2 and a path P between a and b such that internal vertices

of P are in Sv2 − Sv. Let γ(t2) = v, L = P , and Eh be the disjoint paths from ξv2(h) to

ξv(h) for all h ∈ {i, j, k, l} constructed by specified linkages. Also by Claim 5.2.1.1 for

a = xk(u0), b = yk(u0) and w = v3, there exist a descendant v′ of v3 and a path P ′ between

a and b such that internal vertices of P ′ are in Sv3 − Sv′ . Let γ(t3) = v′, R = P ′, and Fh

be the disjoint paths from ξv3(h) to ξv′(h) for all h ∈ {i, j, k, l} constructed by specified

linkages. Then the unique major vertex of T1 has property Aijkl in η′ = η ◦ γ with the first

4-tuple of disjoint paths being Ph(u0)∪Eh for all h ∈ {i, j, l} andXk(u0)∪R∪Yk(u0)∪Ek,

and the second 4-tuple beingQh(u0)∪Fh for all h ∈ {j, k, l} andWi(u0)∪L∪Zi(u0)∪Fi.

Main case 3: |A ∩ B| = 1. Let j be the unique element of A ∩ B. Notice that A − B 6=
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∅. In fact, if A − B = ∅, then |A| = 1. So 2(s − 1) ≤ s and this means s ≤ 2, a

contradiction. Similarly, B − A 6= ∅. Therefore, we can let i ∈ A − B and k ∈ B − A.

Let l ∈ {1, 2, ..., s} − {i, j, k}. Let γ(t0) = u0, γ(t1) = v1. Let u5 be the child of v5 and

let (v5, v12, v13) be its trinity.

If l ∈ B, by Claim 5.2.1.1 for a = wi(u0), b = zi(u0) and w = v2, there exist a minor

vertex v and a path P between a and b such that internal vertices of P are in Sv2 − Sv. Let

γ(t2) = v, Eh be the disjoint paths from ξv2(h) to ξv(h) for all h ∈ {i, j, k, l}, Ll = Ql(u0),

and Li = Wi(u0)∪P ∪Zi(u0). For the rest of this paragraph and the next three paragraphs,

assume l 6∈ B. Assume ni, ri, nl, rl ∈ A or ni, ri, nl, rl ∈ B. Without loss of generality,

assume ni, ri, nl, rl ∈ A. Then let γ(t2) = v5, Eh = Ph(u1) for all h ∈ {i, j, k, l}, and

Lh = Wh(u0)∪Pnh
(u1)∪wh(u1)Qh(u1)zh(u1)∪Prh(u1)∪Zh(u0) for h ∈ {i, l}. Assume

three of ni, ri, nl, rl are in A or in B. Without loss of generality, assume ni, ri, nl ∈ B and

rl 6∈ B. By Claim 5.2.1.1 for a = wrl(u1), b = zrl(u1) and w = v4, there exist a descendant

v of v4 and a path P between a and b such that internal vertices of P are in Sv4 − Sv. Then

let γ(t2) = v, Eh be the disjoint paths from ξv2(h) to ξv(h) for all h ∈ {i, j, k, l}, and

Lh = Wh(u0) ∪ Qnh
(u1) ∪ Pnh

(u5) ∪ wh(u5)Qh(u5)zh(u5) ∪ Prh(u5) ∪ Qh ∪ Zh(u0) for

all h ∈ {i, l}, where Qh = Qrh(u1) if h = i and Qh = Wrh(u1) ∪ P ∪ Zrh(u1) if h = l.

See Figure 5.2.

Xη(v2)

Xη(v)

Xη(v4)

Qnl
(u1)Qni

(u1)Qri(u1)
Wrl(u1)

Zrl(u1)

P

Ql(u5)

Xη(v5)

Qi(u5)
Xη(v12)

zl(u0) wl(u0)

Pnl
(u5)

Figure 5.2: ni, ri, nl ∈ B and rl 6∈ B.

Now assume exactly two of ni, ri, nl, rl are in A or exactly two of ni, ri, nl, rl are in
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B. Without loss of generality, assume exactly two of ni, ri, nl, rl are in A. If nh1 and rh2

are in A for some h1, h2 ∈ {i, l}, then there exist h3 ∈ {i, l} − {h1}, h4 ∈ {i, l} − {h2}

such that nh3 and rh4 are not in A. Then let γ(t2) = v9, Eh = Ph(u1) ∪ Qh(u3) for

all h ∈ {i, j, k, l}, Lh1 be the union of Wh1(u0) ∪ Pnh1
(u1) ∪ Pnh1

(u3) and Zh2(u0) ∪

Prh2 (u1) ∪ Prh2 (u3) and a W6-path in the outer graph at v8 joining their ends, and Lh3 be

the union of Wh3(u0) ∪Xnh3
(u1) and Zh4(u0) ∪Xrh4

and a W6-path in the outer graph at

v5 joining their ends. The remaining case is when ni, nl ∈ A or ni, nl ∈ B. Without loss of

generality, assume ni, nl ∈ A and ri, rl 6∈ A. Assume there exists a path M1 in the η-torso

at u1 that connects Pni
(u1) ∪ Pnl

(u1) and Pri(u1) ∪ Prl(u1) and is internally disjoint from

Pni
(u1) ∪ Pnl

(u1) ∪ Pri(u1) ∪ Prl(u1). Without loss of generality, assume M1 connects

Pni
(u1) and Pri(u1). By Claim 5.2.1.1 for a = ξv4(nl), b = ξv4(rl) and w = v4, there exist

a descendant v of v4 and a path P between a and b such that internal vertices of P are in

Sv4−Sv. Let γ(t2) = v, Eh be the disjoint paths from ξv2(h) to ξv(h) for all h ∈ {i, j, k, l},

and Lh = Wh(u0) ∪ Pnh
(u1) ∪ Ph ∪ Prh(u1) ∪ Zh(u0) for all h ∈ {i, l}, where Ph = M1

when h = i and Ph = P when h = l. See Figure 5.3.

Xη(v2)

Xη(v)

Xη(v4)

P

Xη(v5)

Pni
(u1)

Pnl
(u1) Prl(u1)

Pri(u1)
M1

Figure 5.3: M1 connects Pni
(u1) and Pri(u1).

Now assume there is no path in the η-torso at u1 between Pni
(u1) ∪ Pnl

(u1) and

Pri(u1) ∪ Prl(u1). By Lemma 3.4.2, without loss of generality, assume in the outer graph

at v5 there exists a path M1 from ξv5(j) to xri(u1)Pri(u1)yri(u1) that is disjoint from

xrl(u1)Prl(u1)yrl(u1), and assume in the outer graph at v8 there exists a path M2 from
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ξv8(j) to wi(u3)Qi(u3)zi(u3) that is disjoint from wl(u3)Ql(u3)zl(u3). If Qj(u1) is not

disjoint from Pni
(u1) ∪ Pnl

(u1), then Qj(u1) is disjoint from Pri(u1) ∪ Prl(u1). From

ξv5(j), assume Qj(u1) meets Pni
(u1) ∪ Pnl

(u1) first at a vertex x ∈ V (Pni
(u1)). By

Claim 5.2.1.1 for a = ξv4(nl), b = ξv4(rl) and w = v4, there exist a descendant v of v4

and a path P between a and b such that internal vertices of P are in Sv4 − Sv. Then let

γ(t2) = v, Eh be the disjoint paths from ξv2(h) to ξv(h) for all h ∈ {i, j, k, l}, and Lh =

Wh(u0)∪Pnh
(u1)∪Ph∪Prh(u1)∪Zh(u0) for all h ∈ {i, l}, where Ph =M1∪ξv5(j)Qj(u1)x

when h = i and Ph = P when h = l. See Figure 5.4.

Xη(v2)

Xη(v)

Xη(v4)

P

Xη(v5)

Pni
(u1)

Pnl
(u1) Prl(u1)

Pri(u1)
Qj(u1)

M1

x

Figure 5.4: j ∈ {ni, nl}.

The remaining case is whenQj(u1) is disjoint from Pni
(u1)∪Pnl

(u1)∪Pri(u1)∪Prl(u1),

or Qj(u1) is disjoint from Pni
(u1) ∪ Pnl

(u1) and not disjoint from Pri(u1) ∪ Prl(u1). This

implies j 6∈ {ni, nl}. In the case Qj(u1) is disjoint from Pni
(u1)∪Pnl

(u1) and not disjoint

from Pri(u1) ∪ Prl(u1), from ξv2(j) assume Qj(u1) first meets Pri(u1) ∪ Prl(u1) at y ∈

V (Pri(u1)). Then by Claim 5.2.1.1 for a = xrl(u3), b = yrl(u3) and w = v9, there exist a

descendant v of v9 and a path P between a and b such that internal vertices of P are in Sv9−

Sv. Then let γ(t2) = v, Eh be the disjoint paths from ξv2(h) to ξv(h) for all h ∈ {i, j, k, l},

and Lh = Wh(u0) ∪ Pnh
(u1) ∪ Pnh

(u3) ∪ wh(u3)Qh(u3)zh(u3) ∪ Ph ∪ Prh(u1) ∪ Zh(u0)

for all h ∈ {i, l}, where Pi = M1 ∪ Qj(u1) ∪ Pj(u1) ∪ Pj(u3) ∪M2 if Qj(u1) is disjoint

from Pni
(u1) ∪ Pnl

(u1) ∪ Pri(u1) ∪ Prl(u1), Pi = yQj(u1)ξv2(j) ∪ Pj(u1) ∪ Pj(u3) ∪M2

if Qj(u1) is disjoint from Pni
(u1) ∪ Pnl

(u1) and not disjoint from Pri(u1) ∪ Prl(u1), and
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Pl = Yrl(u3) ∪ P ∪Xrl(u3). See Figure 5.5.

Xη(v2)

Xη(v4)

P

Xη(v5)

Pni
(u1)

Pnl
(u1) Prl(u1)Pri(u1)

Qj(u1)

ξv2(j)

M1

Xη(v)

Xη(v9)

Xrl(u3)

Yrl(u3)

wl(u3)Ql(u3)zl(u3)

M2

Xη(v8)

Pj(u3)Pnl
(u3)

Figure 5.5: Qj(u1) is disjoint from Pni
(u1) ∪ Pnl

(u1) ∪ Pri(u1) ∪ Prl(u1).

Similarly, repeat the argument above by replacing ni, nl, ri, rl by lk, ll,mk,ml, we get

γ(t3), Fh for all h ∈ {i, j, k, l}, and Rh for h ∈ {k, l} such that γ(t3) is a descendant of v3,

Fh are disjoint paths from ξv3(h) to ξγ(t3)(h), and internal vertices of Rh are not in Sγ(t3).

Let L′h be a subpath of Lh with the same ends for all h ∈ {i, l} and R′h be a subpath of

Rh with the same ends for all h ∈ {k, l}. Then the unique major vertex of T1 has property

Aijkl in η′ = η◦γ with the first 4-tuple of disjoint paths being Ph(u0)∪Eh for all h ∈ {i, j}

and R′h∪Eh for all h ∈ {k, l}, and the second 4-tuple being Qh(u0)∪Fh for all h ∈ {j, k}

and L′h ∪ Fh for all h ∈ {i, l}.

Main case 4: A ∩B = ∅. It follows that s is even and |A| = |B| = s/2. Assume as a case

that for some integer i ∈ B either li,mi ∈ A or li,mi ∈ B and for some k ∈ A, nk, rk ∈ A

or nk, rk ∈ B. But the integers li,mi are pairwise distinct, and so if li,mi ∈ A, then there

exists j ∈ B such that lj,mj ∈ B, and similarly if li,mi ∈ B. If nk, rk ∈ A, then there

exists l ∈ A such that nl, rl ∈ B, and similarly if nk, rk ∈ B. We may therefore assume that

there exist k, l ∈ A and i, j ∈ B such that nk, rk, li,mi ∈ A and nl, rl, lj,mj ∈ B. We let γ

map t0, t1, t2, t3 to u0, v1, v9, v11, respectively, and we will prove that t0 has property Aijkl

in η′. To that end we need to construct two 4-tuples of disjoint paths. The first two paths of
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the first 4-tuple are Qi(u0)∪Pi(u2)∪Qi(u4) and Qj(u0)∪Pj(u2)∪Qj(u4). The third path

of the first 4-tuple is the union of Wk(u0) ∪ Pnk
(u1) ∪ Pnk

(u3) and Prk(u3) ∪ Prk(u1) ∪

Zk(u0)∪Pk(u2)∪Qk(u4) and a suitable W6-path in the outer graph at v8 joining their ends

by Lemma 3.4.2. The fourth path of the first 4-tuple is the union of Wl(u0) ∪Xnl
(u1) and

Xrl(u1)∪Zl(u0)∪Pl(u2)∪Ql(u4) and a suitable W6-path in the outer graph at v5 joining

their ends by Lemma 3.4.2. The first two paths of the second 4-tuple is Pk(u0) ∪ Pk(u1) ∪

Qk(u3) and Pl(u0) ∪ Pl(u1) ∪Ql(u3). The third path of the second 4-tuple is the union of

Xi(u0)∪Pli(u2)∪Pli(u4) and Qi(u3)∪Pi(u1)∪Yi(u0)∪Pmi
(u2)∪Pmi

(u4) and a suitable

W6-path in the outer graph at v10 joining their ends by Lemma 3.4.2. The fourth path of the

second 4-tuple is the union of Xj(u0) ∪Xlj(u2) and Qj(u3) ∪ Pj(u1) ∪ Yj(u0) ∪Xmj
(u2)

and a suitable W6-path in the outer a graph at v7 joining their ends by Lemma 3.4.2. This

completes the case that for some integer i ∈ B either li,mi ∈ A or li,mi ∈ B and for some

integer k ∈ A either nk, rk ∈ A or nk, rk ∈ B.

We may therefore assume that for every i ∈ B one of li,mi belongs to A and the other

belongs to B, or for every k ∈ A one of nk, rk belongs to A and the other belongs to

B. Without loss of generality, assume that for every i ∈ B one of li,mi belongs to A

and the other belongs to B. For every i ∈ B a subpath of Pi(u0) joins ξv3(li) to ξv3(mi)

in the outer graph at v3 and is disjoint from the η-torso at u0, except for its ends. Let J

be the union of these subpaths; then J is a linkage from {ξv3(i) : i ∈ A} to {ξv3(i) :

i ∈ B}. For i ∈ B the path Qi(u0) is a subgraph of the η-torso at u0. It follows that

J
⋃
i∈B Qi(u0)

⋃
i∈A Zi(u0)

⋃
i∈AWi(u0) is a linkage from Xη(v1) to Xη(v2), and so by the

minimality of the specified u0-linkages it is equal to the specified left u0-linkage. It follows

that u0 has property B in η.

5.3 Reduced properties

Similarly to the 2-connected case, we have the following result:

Lemma 5.3.1. Let (T,X) be a tree-decomposition of a graph G, let η : Th ↪→ T be an
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ordered cascade in (T,X) with orderings ξt, specified linkages and common intersection

set I , let γ : Th′ ↪→ Th be a monotone homeomorphic embedding, and let η′ := η ◦ γ :

Th′ ↪→ T be a subcascade of η of height h′. Then for every major vertex t0 ∈ V (Th′)

(i) η′ is an ordered cascade with orderings ξγ(t) and common intersection set I ,

(ii) if the vertex γ(t0) has property Amijkl (or Bijkl, B1
ijkl, resp.) in η, then t0 has property

Amijkl (or Bijkl,B1
ijkl, resp.) in η′.

Furthermore, the specified linkages for η′ may be chosen in such a way that

(iii) (At0 , Bt0 , Ct0 , Dt0) = (Aγ(t0), Bγ(t0), Cγ(t0), Dγ(t0)),

(iv) the vertex t0 has property B in η′ if and only if γ(t0) has property B in η, and

(v) if the specified linkages for η are minimal, then the specified linkages for η′ are

minimal.

Lemma 5.3.2. There exists a positive integer h such that the following holds. Let s ≥ 4

be an integer and let (T,X) be a tree-decomposition of a graph G. Let η : Th ↪→ T be

an ordered cascade in (T,X) of height h and size |I| + s with orderings ξt and common

intersection set I such that there exist some distinct i, j, k, l ∈ {1, 2, . . . , s} and m ∈

{0, 1, 2, 3, 4} such that every major vertex of Th has property Amijkl. Then there exists a

weak subcascade η′ : T1 ↪→ T of η of height one such that the unique major vertex of

T1 has property Amijkl with ordered feet in η′ if m ∈ {0, 1} or T1 has property Amijkl with

ordered left-feet in η′ if m ∈ {2, 3, 4}.

Proof. Let h(a, k) be the function of Lemma 3.3.2. Let h = h(4, (4!)2). Assume u is an

arbitrary major vertex of Th and its trinity is (v1, v2, v3). Assume the feet of Li, Lj, Lk, Ll

in Xη(v2) are x1, x2, x3, x4 and the feet of Li, Lj, Lk, Ll in Xη(v3) are x5, x6, x7, x8. Then

for every major vertex u of Th, consider the tuple (x1, x2, x3, x4, x5, x6, x7, x8) as its color.

By Lemma 3.3.2, there exists a monotone homeomorphic embedding γ : T4 ↪→ Th such
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that γ(t) has the same tuple of eight feet for every major vertex t ∈ V (T4). Let η1 =

η ◦ γ : T4 ↪→ T . By Lemma 5.3.1, η1 is still an ordered cascade where every major vertex

t ∈ V (T4) has propertyAmijkl. Also, t has the same tuple of eight feet for every major vertex

t ∈ V (T4).

Assume t0 is a major root of T1 and its trinity is (t1, t2, t3). Let u0 be the major root

of T4 and its trinity be (v, v1, w1). Let u be a major vertex in T4 and let (v1, v2, v3) be its

trinity.

First assume m ∈ {2, 3, 4}. Let xi, xj, xk, xl be the end of Li(u) and the feet of

Lj(u), Lk(u), Ll(u) in Xη1(v1), respectively. Let f be the function such that f(xh) are

the feet of Lh(u) in Xη1(v2) for all h ∈ {j, k, l} and fxi is the other end of Li(u). Define

f0(x) = f(x) and fn(x) = f(fn−1(x)) for n ≥ 1.

Let γ1(t0) = u0, γ1(t1) = v, and γ1(t3) = w1. For h ∈ {1, 2}, let uh be the child of vh

and vh+1 be the left child of uh. Let xi, xj, xk, xl be the feet ofLi(u0), Lj(u0), Lk(u0), Ll(u0)

in Xη(v). Then there exists h1 ∈ {1, 2, 3} such that fh1(x) = x for all x ∈ {xi, xj, xk, xl}.

Let γ1(t2) = vh1 and η′ = η1 ◦ γ1. For h ∈ {i, j, k, l}, let

Lh = Lh(u0) ∪
( ⋃
1≤n<h1

fn(xh)Lh(un)fn+1(xh)
)

. Then these paths and tripods and Ri(u0) show that η′ is as desired.

Therefore assumem ∈ {0, 1} . Let xi, xj, xk, xl be the feet ofLi(u), Lj(u), Lk(u), Ll(u)

inXη1(v1), respectively. Let f, g be functions such that f(xh) are the feet of Lh(u) inXη1(v2)

and g(xh) are the feet of Lh(u) in Xη1(v3) for all h ∈ {i, j, k, l}. Define f0(x) = f(x) and

fn(x) = f(fn−1(x)) for n ≥ 1, and g0(x) = g(x) and gn(x) = g(gn−1(x)) for n ≥ 1.

Assume t0 is a major root of T1 and its trinity is (t1, t2, t3). Let u0 be the major root

of T4 and its trinity be (v, v1, w1). Let γ1(t0) = u0 and γ1(t1) = v. For h ∈ {1, 2}, let uh

be the child of vh and vh+1 be the left child of uh, and let rh be the child of wh and wh+1

be the right child of rh. Let xi, xj, xk, xl be the feet of Li(u0), Lj(u0), Lk(u0), Ll(u0) in
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Xη(v). Then there exists h1, h2 ∈ {1, 2, 3} such that fh1(x) = x and gh2(x) = x for all

x ∈ {xi, xj, xk, xl}. Let γ1(t2) = vh1 ,γ1(t3) = wh2 , and η′ = η1 ◦ γ1. For h ∈ {i, j, k, l},

let

Lh = Lh(u0) ∪
( ⋃
1≤n<h1

fn(xh)Lh(un)fn+1(xh)
)
∪
( ⋃
1≤n<h2

gn(xh)Lh(rn)gn+1(xh)
)
,

Then these tripods show that η′ is as desired.

Lemma 5.3.3. Let s ≥ 4 be an integer and let (T,X) be a tree-decomposition of a graph

G satisfying (W6). Let η : T3 ↪→ T be an ordered cascade in (T,X) of height two and

size |I| + s with orderings ξt and common intersection set I such that there exist distinct

i, j, k, l ∈ {1, 2, . . . , s} such that

• every major vertex of T3 has property A2
ijkl with ordered left-feet, or

• every major vertex of T3 has property A3
ijkl with ordered left-feet, or

• every major vertex of T3 has property A4
ijkl with ordered left-feet.

Then there exists a weak subcascade η′ : T1 ↪→ T of η of height one such that the unique

major vertex of T1 has property A1
i′j′k′l′ in η′, where (i′, j′, k′, l′) = (i, j, k, l) for the first

and third cases and (i′, j′, k′, l′) = (j, i, k, l) for the second case.

Proof. Assume that the major root of T3 is u0 and its trinity is (v1, v2, v3). Let u1 be the

major vertex at height one that is adjacent to v2 and let its trinity be (v2, v4, v5). Let the

major root of T1 be t0 and its trinity be (t1, t2, t3). Let xh be the foot of Lh(u1) in Xη(v5).

Let γ(t0) = u0, γ(t1) = v1, γ(t2) = v5, γ(t3) = v3. Then η′ = η ◦ γ is as desired.

In fact, assume every major vertex of T3 has property A2
ijkl with ordered left-feet.

For h ∈ {j, k, l}, let Lh = Lh(u0) ∪ ξv2(h)Lh(u1)xh. Let Li = Li(u0) ∪ Li(u1) ∪ P

∪ξv2(l)Ll(u1)ξv4(l) ∪ Ri(u1) ∪ ci(u0)Ll(u0)ξv2(l) ∪ Ri(u0), where P is a W6-path in the

outer graph at v4 joining ξv4(i) and ξv4(l). Then these tripods show that t0 has property

A1
ijkl in η′.
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Assume every major vertex of T3 has property A3
ijkl with ordered left-feet. For h ∈

{j, k, l}, letLh = Lh(u0)∪ξv2(h)Lh(u1)xh. LetLi = Li(u0)∪Li(u1)∪P ∪ξv2(k)Lk(u1)ξv4(k)∪

Ri(u1)∪ci(u0)Lk(u0)ξv2(k)∪Ri(u0), where P is a W6-path in the outer graph at v4 joining

ξv4(i) and ξv4(k). Then these tripods show that t0 has property A1
jikl in η′.

Therefore assume every major vertex of T3 has property A4
ijkl with ordered left-feet.

Let Ll = Ll(u0) ∪ ξv2(l)Ll(u1)xl. Assume yh is the foot of Lh(u0) in Xη(v3) for all h ∈

{i, j, k}. Let z1 be the vertex on Lj(u0) ∩ Lk(u0) that is closest to yj . Then let Lk =

ξv1(k)Lk(u0)ξv2(k)∪ξv2(k)Lk(u1)xk∪z1Lj(u0)yj . Let z2 be the vertex on Lj(u1)∩Lk(u1)

that is closest to cj(u1). Then let Lj = ξv1(j)Lj(u0)ξv2(j) ∪ ξv2(j)Lj(u1)xj ∪ Ri(u0) ∪

ciLk(u0)ξv2(k)∪ ξv2(k)Lk(u1)z2. Let z3 be the vertex on Lk(u0)∩Ll(u0) that is closest to

yk. Then let Li = ξv1(i)Li(u0)ξv2(i)∪ ξv2(i)Li(u1)xi ∪P1∪ ξv4(k)Lk(u1)ci(u1)∪Ri(u1)∪

ykLk(u0)z3 ∪ z3Ll(u0)ξv2(l) ∪ ξv2(l)Ll(u1)ξv4(l) ∪ P2, where P1 is a W6-path in the outer

graph at v4 joining ξv4(i) and ξv4(k) and P2 is a W6-path in the outer graph at v4 joining P1

and ξv4(l). Then these tripods show that t0 has property A1
ijkl in η′.

Lemma 5.3.4. There exists a positive integer h such that the following holds. Let s ≥ 4 be

an integer and let (T,X) be a tree-decomposition of a graph G satisfying (W6) and (W7).

Let η : Th ↪→ T be a regular cascade in (T,X) of height h and size |I|+s with orderings ξt

and common intersection set I such that every major vertex of Th has property B. Then there

exists a weak subcascade η′ : T1 ↪→ T of η of height one and distinct i, j, k, l ∈ {1, 2, ..., s}

such that the unique major vertex of T1 has property Bijkl in η′.

Proof. Let h be as in Lemma 3.3.2 applied to a = 4 and k = (s/2)2 + 2(s/2)3. Let the

common confinement sets for η be A,B,C,D. Let the major root of T1 be t0 and its trinity

be (t1, t2, t3). Let the major root of T4 be u0 and its trinity be (w1, w2, w3). Let two major

vertices at height one of T4 be u1 and u2. Assume the trinity at u1 is (w2, w4, w5) and the

trinity at u2 is (w3, w6, w7). Let the child of w6 be u3 and the child of w7 be u4.

For a major vertex w ∈ V (Th) with trinity (v1, v2, v3) there are disjoint paths in the

η-torso at w as in the definition of property B. For a ∈ A and b ∈ B let Ra(w) denote the
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path with ends ξv1(a) and ξv2(a), let Rb(w) denote the path with ends ξv1(b) and ξv3(b), let

Rab(w) denote the path with ends ξv2(b) and ξv3(a), let Ya(w) denote the path with ends

ξv2(a) and ξv2(g(a)), and let Za(w) denote the path with ends ξv3(a) and ξv3(g(a)), where

g is the bijective function between A and B as in the definition of property B. Let gh be the

functions as in the definition of property B at major vertex uh for all h ∈ {0, 1, 2, 3, 4}.

Let I be the common intersection set of η. Then η(v1), η(v2), η(v3) is a triad in T with

center η(w) and for all i ∈ {1, 2, 3} we have Xη(vi)∩Xη(w) = I = Xη(v1)∩Xη(v2)∩Xη(v3),

and hence the triad is not X-separable. By (W7) there is a path R(w) connecting two of

the three sets of disjoint paths in the η-torso at w.

If R(w) goes from Ra(w) to Rb(w) for a ∈ A and b ∈ B, we say it w has color (a, b).

If R(w) goes from Ra(w) to Rcb for a ∈ A or a ∈ B and b ∈ B, c ∈ A, we say w has color

(a, cb). By Lemma 3.3.2, there exists a monotone homeomorphic embedding γ : T4 ↪→ Th

and a ∈ A, b ∈ B such that γ(t) has color (a, b) in η for every major vertex t ∈ V (T4), or

there exists a monotone homeomorphic embedding γ : T4 ↪→ Th and a ∈ A or a ∈ B and

b ∈ B, c ∈ A such that γ(t) has color (a, cb) in η for every major vertex t ∈ V (T4).

Assume there exists a monotone homeomorphic embedding γ : T4 ↪→ Th and a ∈

A, b ∈ B such that γ(t) has color (a, b) in η for every major vertex t ∈ V (T4). Let

η1 = η ◦ γ, then by Lemma 5.3.1, t has property B in η1 for every major vertex t ∈ V (T4)

and one end of R(t) is in the path Ra(t) and the other end is in Rb(t). Let γ1(t0) =

u0, γ1(t1) = w1, γ1(t2) = w2, and γ1(t3) = w7. Let η′ = η1 ◦ γ1. Let x1 ∈ A be such that

g0(x1) = b. If x1 = a then t0 has property Babcd in η′ for some c ∈ A−{a} and d = g0(c).

Therefore assume x1 6= a. Let d = g0(a), x2 = g2(a) and c such that g2(c) = b. Then argue

similarly we also have a 6= c.

Claim 5.3.4.1. Let w be a minor vertex of T4 of height at most two. Then in the outer

graph at w there are two disjoint paths from ξw(a) to ξw(b) and from ξw(a
′) to ξw(b′) for

any a′ ∈ A− {a} and b′ ∈ B − {b}.

In fact, let u be the child of w and let the trinity at u be (w,w′, w′′). Let M1 =
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ξw(a)Ra(u)x ∪ R(u) ∪ yRb(w)ξw(b), where x and y are the ends of R(u), and M2 =

Ra′(u) ∪ P1 ∪ Rb′′b(u) ∪ P2 ∪ Rb′(u), where b′′ has b as the image in the function in the

definition of property B at u, P1 is a W6-path in the outer graph at w′ between ξw′(a′) and

ξw′(b) and P2 is a W6-path in the outer graph at w′′ between ξw′′(b′′) and ξw′′(b′). Then M1

and M2 are two disjoint paths needed.

Denote the two paths in Claim 5.3.4.1 as Mab(u) and Ma′b′(u). Back to the lemma, let

Rh = Rh(u0) for all h ∈ {a, c} and Rh = Rh(u0) ∪ Rh(u2) for all h ∈ {b, d}. Let Rab =

Rx1b(u0)∪Rx1(u2)∪Mx1x2(u3)∪Rax2(u2) andRcd = Rad(u0)∪Ra(u2)∪Mab(u3)∪Rcb(u2).

Let Ya = Mab(u1), Yc = Mcd(u1), Za = Mab(u4), and Zc = Mcd(u4). Then these paths

show that t0 has property Babcd in η′.

Therefore we can assume there exists a monotone homeomorphic embedding γ : T4 ↪→

Th and a ∈ A or a ∈ B and b ∈ B, c ∈ A such that γ(t) has color (a, cb) in η for every

major vertex t ∈ V (T4). Without loss of generality, assume a ∈ A. Let η1 = η ◦ γ, then by

Lemma 5.3.1, t has property B in η1 for every major vertex t ∈ V (T4) and one end of R(t)

is in the path Ra(t) and the other end is in Rcb(t).

Claim 5.3.4.2. Let w be a minor vertex of T4 of height at most two. Then in the outer

graph at w there are two disjoint paths from ξw(a) to ξw(b) and from ξw(a
′) to ξw(b′) for

any a′ ∈ A− {a} and b′ ∈ B − {b}.

In fact, let u be the child of w and let the trinity at u be (w,w′, w′′). Let N1 =

ξw(a)Ra(u)x ∪ R(u) ∪ yRcb(w)ξw′′(c) ∪ Zc(u) ∪ Rb(u), where x and y are the ends of

R(u). Let N2 = Ra′(u) ∪ P ∪ Rb′′b′(u) ∪ Zb′′ ∪ Rb′(u), where b′′ has b′ as the image in

the function in the definition of property B at u and P is a W6-path in the outer graph at w′

between ξw′(a′) and ξw′(b′). Then N1 and N2 are two disjoint paths needed.

Now denote the two paths in Claim 5.3.4.2 as Nab(u) and Na′b′(u). Back to the lemma,

Let γ1(t0) = u0, γ1(t1) = w1, γ1(t2) = w2, and γ1(t3) = w7. Let η′ = η1 ◦ γ1. If

c = a then t0 has property Babed in η′ for some e ∈ A − {a} and d = g0(e). Therefore

assume c 6= a. Let d = g0(a) and x1 = g2(a). Let Rh = Rh(u0) for all h ∈ {a, c} and
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Rh = Rh(u0) ∪ Rh(u2) for all h ∈ {b, d}. Let Rab = Rcb(u0) ∪ Rc(u2) ∪ P ∪ Rax1(u2),

where P is a W6-path in the outer graph at w6 between ξw6(c) and ξw6(x1), and Rcd =

Rad(u0)∪ ξw3(a)Ra(u2)x∪R(u3)∪ yRcb(u2)ξw7(c), where x and y are the ends of R(u3).

Let Ya = Nab(u1), Yc = Ncd(u1), Za = Nab(u4), and Zc = Ncd(u4). Then these paths

show that t0 has property Babcd in η′.

Lemma 5.3.5. Let s ≥ 4 be an integer and let (T,X) be a tree-decomposition of a graphG

satisfying (W6). Let η : T3 ↪→ T be a regular cascade in (T,X) of size |I|+swith orderings

ξt and common intersection set I such that there exist distinct i, j, k, l ∈ {1, 2, ..., s} such

that every major vertex of T3 has property Bijkl. Then there exists a weak subcascade

η′ : T1 ↪→ T of η of height one such that the unique major vertex of T1 has property B1
ijkl

in η′.

Proof. Assume that three major vertices at height zero and one of T3 are u0, u1, u2. Let

the trinity at u0 be (v1, v2, v3), the trinity at u1 be (v2, v4, v5), and the trinity at u2 be

(v3, v6, v7). Assume the major vertex of T1 is t0, and its trinity is (t1, t2, t3). For a

major vertex w ∈ V (T3) let Ri(t0), Rj(t0), Rk(t0), Rl(t0), Rij(t0), Rkl(t0), R(t0), Yi(t0),

Yk(t0), Zi(t0), Zk(t0) be as in the definition of property Bijkl.

We need to find a weakly monotone homeomorphic embedding γ : T1 ↪→ T3 such

that η′ = η ◦ γ satisfies the requirement. Set γ(t0) = u0 and γ(t1) = v1. Our choice for

γ(t2) will be v4 or v5, depending on which two of the three paths Ri(u1), Rj(u1), Rij(u1)

in the η-torso at u1 the path R(u1) is connecting. If R(u1) is between Ri(u1) and Rj(u1),

then choose either v4 or v5 for γ(t2). If R(u1) is between Ri(u1) and Rij(u1), then set

γ(t2) = v4, and if it is between Rj(u1) and Rij(u1), then set γ(t2) = v5. Do this similarly

for γ(t3). Then η′ = η ◦ γ will satisfy the requirement. In fact, we will prove this for the

case whenR(u1) is betweenRi(u1) andRij(u1) andR(u2) is betweenRj(u2) andRij(u2).

The other cases are similar.

In this case, our choice is γ(t0) = u0, γ(t1) = v1, γ(t2) = v4, γ(t3) = v7. Assume the
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end of R(u1) in Rij(u1) is x and the end of R(u2) in Rij(u2) is y. Now let

P = xRij(u1)ξv5(i) ∪ Zi(u1) ∪Rj(u1) ∪Rij(u0) ∪Ri(u2) ∪ Yi(u2) ∪ ξv6(j)Rij(u2)y,

Li = Ri(u0) ∪Ri(u1) ∪R(u1) ∪ P ∪ yRij(u2)ξv7(i),

Lj = Rj(u0) ∪Rj(u2) ∪R(u2) ∪ P ∪ xRij(u1)ξv4(j),

Rk = Rk(u0) ∪Rk(u1),

Rl = Rl(u0) ∪Rl(u1),

and

Rkl = Rkl(u1) ∪ Zk(u1) ∪Rl(u1) ∪Rkl(u0) ∪Rk(u2) ∪ Yk(u2) ∪Rkl(u2).

Then the paths and tripods show that the major vertex of η′ = η ◦ γ : T1 ↪→ T has

property B1
ijkl.

Lemma 5.3.6. For every positive integers h′ and w ≥ 4 there exists a positive integer

h = h(h′, w) such that the following holds. Let s be a positive integer such that 4 ≤ s ≤ w.

Let (T,X) be a tree-decomposition of a graph G of width less than w and satisfying (W6)-

(W7). Assume there exists a regular cascade η : Th ↪→ T of size |I| + s with specified

linkages that are minimal, where I is its common intersection set. Then there exist distinct

integers i, j, k, l ∈ {1, 2, . . . , s} and a weak subcascade η′ : Th′ ↪→ T of η of height h′ such

that

• every major vertex of Th′ has property A0
ijkl with ordered feet in η′, or

• every major vertex of Th′ has property A1a
ijkl with ordered feet in η′

• every major vertex of Th′ has property B1
ijkl in η′

107



Proof. Let h(a, k) be the function of Lemma 3.3.2. Let h1 be h in Lemma 5.3.2 and h2 be h

in Lemma 5.3.4. Let a5 = h(h′, 2), a4 = max{3a5, h(h′, 2)}, a3 = max{3a4, h1a4}, a2 =

h(a3, 5.4!
(
w
4

)
), a1 = max{7a2, h2a2} and h = h(a1, 2). Consider having property B or not

having property B as colors, then by Lemma 3.3.2 there exists a monotone homeomorphic

embedding γ : Ta1 ↪→ Th such that either γ(t) has property B in η for every major vertex

t ∈ V (Ta1) or γ(t) does not have property B in η for every major vertex t ∈ V (Ta1). By

Lemma 5.3.1 η1 = η ◦ γ : Ta1 ↪→ T is still a regular cascade with specified linkages that

are minimal. Also, either t has property B in η1 for every major vertex t ∈ V (Ta1) or t does

not have property B in η1 for every major vertex t ∈ V (Ta1).

If t has property B in η1 for every major vertex t ∈ V (Ta1), then by Lemma 5.3.4

there exists a weak subcascade η2 of η1 of height a2 such that every major vertex of Ta2

has property Bijkl in η2 for some distinct i, j, k, l ∈ {1, 2, ..., s}. Consider each choice of

tuple (i, j, k, l) as a color; then by Lemma 3.3.2 there exists a monotone homeomorphic

embedding γ1 : Ta3 ↪→ Ta2 such that for some distinct i, j, k, l ∈ {1, 2, ..., s}, γ1(t) has

property Bijkl in η2 for every major vertex t ∈ V (Ta3). Let η3 = η2 ◦ γ1. Then by

Lemma 5.3.1 this implies t has property Bijkl in η3 for every major vertex t ∈ V (Ta3). By

Lemma 5.3.5 there exists a weak subcascade η4 of η3 of height a4 such that every major

vertex of Ta4 has property B1
ijkl in η4. Hence η4 is as desired.

If t does not have property B in η1 for every major vertex t ∈ V (Ta1), then by Lemma 5.2.1

there exists a weak subcascade η2 of η1 of height a2 such that every major vertex of

Ta2 has property Aijkl for some distinct i, j, k, l ∈ {1, 2, ..., s}. By Lemma 5.1.1, ev-

ery major vertex of Ta2 has property Amijkl for some distinct i, j, k, l ∈ {1, 2, ..., s} and

m ∈ {0, 1, 2, 3, 4}. Consider each property Amijkl as a color; then by Lemma 3.3.2 there

exists a monotone homeomorphic embedding γ1 : Ta3 ↪→ Ta2 such that for some distinct

i, j, k, l ∈ {1, 2, ..., s} andm ∈ {0, 1, 2, 3, 4}, γ1(t) has propertyAmijkl in η2 for every major

vertex t ∈ V (Ta3). Let η3 = η2 ◦ γ1, then t has property Amijkl in η3 for every major vertex

t ∈ V (Ta3) by Lemma 5.3.1.
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If m ∈ {0, 1}, by Lemma 5.3.2, there exists a weak subcascade η4 of η3 of height a4

such that every major vertex of Ta4 has property Amijkl with ordered feet. If m = 0 then

η4 is as desired. If m = 1, then by Lemma 3.3.2 there exists a monotone homeomorphic

embedding γ2 : Th′ ↪→ Ta4 such that either γ2(t) has property A1a
ijkl in η4 for every major

vertex t ∈ V (Th′) or γ2(t) has property A1b
ijkl in η4 for every major vertex t ∈ V (Th′).

Let η5 = η4 ◦ γ2, then by Lemma 5.3.1 t has property A1a
ijkl in η5 for every major vertex

t ∈ V (Th′) or t has property A1b
ijkl in η5 for every major vertex t ∈ V (Th′). If t has property

A1b
ijkl then it also has property B1

jkil, so η5 is as desired.

If m ∈ {2, 3, 4}, by Lemma 5.3.2, there exists a weak subcascade η4 of η3 of height a4

such that every major vertex of Ta4 has propertyAmijkl with ordered left-feet. By Lemma 5.3.3,

there exists a weak subcascade η5 of η4 of height a5 and distinct i′, j′, k′, l′ ∈ {1, 2, ..., s}

such that every major vertex of Ta5 has propertyA1
i′j′k′l′ with ordered feet. By Lemma 3.3.2

there exists a monotone homeomorphic embedding γ2 : Th′ ↪→ Ta5 such that either γ2(t)

has property A1a
ijkl in η5 for every major vertex t ∈ V (Th′) or γ2(t) has property A1b

ijkl in

η5 for every major vertex t ∈ V (Th′). Let η6 = η5 ◦ γ2, then by Lemma 5.3.1 t has prop-

erty A1a
ijkl in η6 for every major vertex t ∈ V (Th′) or t has property A1b

ijkl in η6 for every

major vertex t ∈ V (Th′). If t has property A1b
ijkl then it also has property B1

jkil, so η6 is as

desired.

5.4 Proof of Theorem 1.1.6

Lemma 5.4.1. If a graph H has three distinct vertices u, v, w such that H\{u, v, w} is a

forest, then there exists an integer n such that H is isomorphic to a minor of P ′′n .

Proof. Let u, v, w ∈ V (H) be such that T := H\{u, v, w} is a forest. We may assume, by

replacing H by a graph with an H minor, that T is isomorphic to CTt for some t, and that

each of u, v, w is adjacent to every vertex of T . It follows that H is isomorphic to a minor

of P2t, as desired.
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Lemma 5.4.2. Let H be a graph with two distinct vertices u, v such that H\{u, v} is an

outerplanar graph. Then there exists an integer n such that H is isomorphic to a minor of

Q′′n.

Proof. By Lemma 3.1.4, there exists an integer t such that H\{u, v} is isomorphic to a

minor of Qt. We may assume, by replacing H by a graph with an H minor, that H\{u, v}

is isomorphic to Qt for some t, and that each of u, v is adjacent to every vertex of Qt. It

follows that H is isomorphic to a minor of Q′′t+2.

Lemma 5.4.3. Let H be a tree plus a cycle going through its leaves in order from the

leftmost leaf to the rightmost leaf and a vertex v adjacent to the leaves of the tree. Then

there exists an integer n such that H is isomorphic to a minor ofR′′n.

Proof. Let T be the tree in H\{v} and C be the cycle going through its leaves. We may

assume, by replacing H\{v} by a graph with an H\{v}minor, that T is isomorphic to CTt

for some t, that C goes through its leaves in order from the leftmost leaf to the rightmost

leaf, and that v is adjacent to every leaf of T . It follows that H is isomorphic to a minor of

R′′t , as desired.

Lemma 5.4.4. Let H be a planar graph that consists of an outerplanar graph with a

cycle going through its degree-2 vertices. Then there exists an integer n such that H is

isomorphic to a minor of S ′′n.

Proof. Let Q be the outerplanar graph and C be the cycle going through its degree-2 ver-

tices in H . By Lemma 3.1.4, there exists an integer t such that Q is isomorphic to a minor

of Qt. We may assume, by replacing H by a planar graph with an H minor, that Q is

isomorphic toQt for some t, and that C goes through the leaves ofQt. It follows that H is

isomorphic to S ′′t .

By Lemmas 5.4.1, 5.4.4, 5.4.3 and 5.4.2 Theorem 1.1.6 is equivalent to the following

theorem.
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Theorem 5.4.5. For every positive integer n, there exists a number p = p(n) such that

every 4-connected graph with path-width at least p has P ′′n,Q′′n,R′′n or S ′′n as a minor.

Lemma 5.4.6. Let n and w be positive integers. There exists a number p = p(n,w) such

that for every 4-connected graph G, if G has tree-width less than w and path-width at least

p, then G has a minor isomorphic to P ′′n,Q′′n,R′′n or S ′′n.

Proof. Let h1 be as in Lemma 3.5.3 applied to k = n and w. Let h2 be as in Lemma 4.4.5.

Let h3 be the number as in Lemma 5.3.6 applied to 4n+1 andw. Let h = max{h1, h2, h3, 2n+

1}. Let p be as in Theorem 3.3.5 applied to a = h and w. By Theorem 3.3.5, there exists a

tree-decomposition (T,X) of G such that:

• (T,X) has width less than w,

• (T,X) satisfies (W1)–(W7), and

• for some s, where 4 ≤ s ≤ w, there exists a regular cascade η : Th ↪→ T of height

h and size s in (T,X) with specified t0-linkages that are minimal for every major

vertex t0 ∈ V (Th).

Let I be the common intersection set of η, let ξt be the orderings, and let s1 = s−|I|. Then

s1 ≥ 1 by the definition of injective cascade.

Assume that s1 = 1. Since s ≥ 4, it follows that |I| ≥ 3. Let x, y, z ∈ I . Let R be

the union of the left and right specified t-linkage with respect to η, over all major vertices

t ∈ V (Th) at height at most h− 2. The minimality of the specified linkages implies that R

is isomorphic to a subdivision of Th−1. Let t be a minor vertex of Th at height h − 1. By

Lemma 3.4.2 there exist three W6-paths with one end ξt(1) and the other end x, y, or z in

the outer graph at t. The union of R and these W6-paths shows that G has a P ′′n minor, as

desired.

Assume that s1 = 2. Since s ≥ 4, it follows that |I| ≥ 2. By Lemma 3.5.3(iii), G has a

P ′′n minor or a Q′′n minor, as desired.
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Assume that s1 = 3. Since s ≥ 4, it follows that I 6= ∅. By Lemma 4.4.5(ii), G has a

P ′′n orR′′n minor, as desired.

We may therefore assume that s1 ≥ 4. Let h′ = 4n + 1. By Lemma 5.3.6 there exist

distinct integers i, j, k, l ∈ {1, 2, . . . , s} and a subcascade η′ : Th′ ↪→ T of η of height h′

such that

• every major vertex of Th′ has property A0
ijkl with ordered feet in η′, or

• every major vertex of Th′ has property A1a
ijkl with ordered feet in η′

• every major vertex of Th′ has property B1
ijkl in η′

Assume that every major vertex of Th′ has property A0
ijkl with ordered feet in η′, and let R

be the union of the corresponding tripods, over all major vertices t ∈ V (Th′) at height at

most h′ − 2. It follows that R is the union of four disjoint trees, each containing a subtree

isomorphic to a subdivision of T(h′−1)/2. Let t be a minor vertex of Th′ at height h′ − 1.

By Lemma 3.4.2 there exist W6-paths with ends ξt(h) and ξt(l) for all h ∈ {i, j, k} in the

outer graph at t. By contracting the tree that contains ξt(h) for all h ∈ {i, j, k}, and by

considering these W6-paths we deduce that G has a P ′′n minor, as desired.

Assume next that every major vertex of Th′ has property A1a
ijkl with ordered feet in η′.

Let the major root of Th′ be u0 and its left child be v. For every major vertex u that is a de-

scendant of v, let Li(u), Lj(u), Lk(u), Ll(u) be the four tripods in the η′-torso at u as in the

definition of propertyA1
ijkl, and let a(u), b(u) be the two ends of the path Li(u)∩Ll(u). Let

R1 =
⋃
u

(ξv1(i)Li(u)ξv2(i) ∪ ξv1(l)Ll(u)ξv3(l)∪

∪ ξv2(l)Ll(u)a(u) ∪ a(u)Ll(u)b(u) ∪ b(u)Li(u)ξv3(i)),

R2 =
⋃
u

Lj(u),

112



and

R3 =
⋃
u

Lk(u),

where the unions are taken over all major vertices u at height at most h′ − 2 that are

descendants of v and (v1, v2, v3) here is the trinity at u. Then R1, R2, R3 are disjoint and

R2 or R3 is a tree isomorphic to a subdivision of Th′−2. Let t be a minor vertex of Th′

at height h′ − 1. By Lemma 3.4.2 there exist W6-paths with ends ξt(h) and ξt(k) for all

h ∈ {i, j, l} in the outer graph at t. By Lemma 3.4.2, there exists a W6-path with ends

ξv(i) and ξv(l) in the subgraph of G induced by
⋃
Xr − I , where the union is taken over

all r in the component containing η′(u0) of T − η′(v). By contracting R2 to one vertex and

considering that vertex and R1, R3 and these W6-paths we deduce that G has a R′′n minor,

as desired.

We may therefore assume that every major vertex of Th′ has property B1
ijkl in η′. For

every major vertex u in Th′ , letLi(u), Lj(u) andRk(u), Rl(u), Rkl(u) be as in the definition

of property Bijkl. Let the major root of Th′ be u0 and its left child be v. Let

R1 =
⋃
u

(
Rk(u) ∪Rl(u) ∪Rkl(u)

)
and R2 =

⋃
u

(
Li(u) ∪ Lj(u)

)
,

where the unions are taken over all major vertices u at height at most h′ − 2 that are

descendants of v. Then R1 is disjoint from R2, which contains a subgraph isomorphic to

a subdivision of Qh′−3 by Lemma 3.5.2. By considering R1, R2 and W6-paths as in the

above case, we deduce that G has a S ′′h′−3 minor, as desired.

Proof of Theorem 5.4.5. Let a positive integer n be given. By Theorem 1.1.1 there exists

an integer w such that every graph of tree-width at least w has a minor isomorphic to S ′′n.

Let p = p(n,w) be as in Lemma 5.4.6. We claim that p satisfies the conclusion of the

theorem. Indeed, let G be a 4-connected graph of path-width at least p. By Theorem 1.1.1,

if G has tree-width at least w, then G has a minor isomorphic to S ′′n, as desired. We may

therefore assume that the tree-width of G is less than w. By Lemma 5.4.6 G has a minor
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isomorphic to P ′′n,Q′′n,R′′n or S ′′n, as desired.
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