
COMBINATORIAL PROBLEMS FOR GRAPHS AND
PARTIALLY ORDERED SETS

A Thesis
Presented to

The Academic Faculty

by

Ruidong Wang

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in
Algorithms, Combinatorics, and Optimization

School of Mathematics
Georgia Institute of Technology

December 2015

Copyright c© 2015 by Ruidong Wang



COMBINATORIAL PROBLEMS FOR GRAPHS AND
PARTIALLY ORDERED SETS

Approved by:

Professor William T. Trotter, Advisor
School of Mathematics
Georgia Institute of Technology

Professor Dana Randall
School of Computer Science
Georgia Institute of Technology

Professor Dwight Duffus (Reader)
Department of Mathematics and
Computer Science
Emory University

Professor Prasad Tetali
School of Mathematics
Georgia Institute of Technology

Assistant Professor Esther Ezra
School of Mathematics
Georgia Institute of Technology

Professor Xingxing Yu
School of Mathematics
Georgia Institute of Technology

Date Approved: 9 November 2015



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Basic notation for graphs . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Basic notation for partially ordered sets . . . . . . . . . . . . . . . . 2

II DIMENSION AND MATCHINGS IN COMPARABILITY AND
INCOMPARABILITY GRAPHS . . . . . . . . . . . . . . . . . . . . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Hiraguchi’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 The Removable Pair Conjecture . . . . . . . . . . . . . . . . . . . . 12

2.4 Statements of Main Theorems . . . . . . . . . . . . . . . . . . . . . 15

2.5 Three New Inequalities for Dimension . . . . . . . . . . . . . . . . . 17

2.5.1 New Inequalities for Dimension . . . . . . . . . . . . . . . . . 18

2.5.2 The Inequality of Theorem 2.5.4 is Tight . . . . . . . . . . . 20

2.5.3 An Inequality Involving Matchings . . . . . . . . . . . . . . . 21

2.6 Chain Matchings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.1 Existence of Pure Maximum Chain Matchings . . . . . . . . 24

2.6.2 The Proof of the Chain Matching Theorem . . . . . . . . . . 26

2.6.3 Chain matching theorem of 3-dimensional posets . . . . . . . 27

2.6.4 Matchings in Cover Graphs . . . . . . . . . . . . . . . . . . . 29

2.7 Antichain Matchings . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7.1 The Proof of the Chain Matching Theorem . . . . . . . . . . 31

2.7.2 Antichain matching theorem of 3-dimensional posets . . . . . 33

III GRAPHS WITH LARGE GIRTH AND LARGE CHROMATIC
NUMBER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Cover Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 37

iii



3.1.2 A New Graph Parameter . . . . . . . . . . . . . . . . . . . . 38

3.2 Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Proof of the Main Theorem . . . . . . . . . . . . . . . . . . . 40

3.3 Upper and Lower Cover Dimension . . . . . . . . . . . . . . . . . . 44

IV DIMENSION OF RANDOM ORDERED SETS . . . . . . . . . . 50

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.1 Statements of New Results . . . . . . . . . . . . . . . . . . . 53

4.2 Essential Background Material . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Interval Dimension . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 Matchings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Upper Bounds, Latin Rectangles and Euler Functions . . . . . . . . 60

4.3.1 Generalized Latin Rectangles . . . . . . . . . . . . . . . . . . 62

4.3.2 Applying Generalized Latin Rectangles . . . . . . . . . . . . 66

4.3.3 Another Upper Bound Construction . . . . . . . . . . . . . . 66

4.3.4 Comparting Two Upper Bounds . . . . . . . . . . . . . . . . 68

4.4 Improved Lower Bounds on Dimension . . . . . . . . . . . . . . . . 70

4.4.1 Short Families, Short Realizers and Short Dimension . . . . . 71

4.4.2 Proof of Lower Bounds . . . . . . . . . . . . . . . . . . . . . 82

4.5 An Extremal Problem and Its Implications for Random Posets . . . 85

4.5.1 An Application of the Lovász Local Lemma . . . . . . . . . . 87

4.5.2 The Implications of Being 2-Mixed . . . . . . . . . . . . . . . 89

4.6 A Second Extremal Problem . . . . . . . . . . . . . . . . . . . . . . 91

4.7 Some Comments on Open Problems . . . . . . . . . . . . . . . . . . 94

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

iv



LIST OF FIGURES

1 An order diagram of a poset P on 15 points . . . . . . . . . . . . . . 4

2 Comparability graph and incomparability graph . . . . . . . . . . . . 5

3 Families of 3-irreducible posets . . . . . . . . . . . . . . . . . . . . . 7

4 Miscellaneous examples of 3-Irreducible posets . . . . . . . . . . . . 8

5 Defining linear extensions using blocks . . . . . . . . . . . . . . . . . 9

6 Two small indecomposable posets with width at least 3 . . . . . . . 11

7 Critical pairs need not be removable . . . . . . . . . . . . . . . . . . 14

8 Posets witness that the inequality in Theorem 2.5.4 is tight . . . . . 20

9 Characterizing chains in a maximum matching . . . . . . . . . . . . . 24

10 The dimension of P is at most 2 . . . . . . . . . . . . . . . . . . . . 29

11 The dimension of P is at most 2 . . . . . . . . . . . . . . . . . . . . 35

12 P = P (g, 3) has eye parameter at most 2 . . . . . . . . . . . . . . . . 40

v



SUMMARY

This dissertation has three principal components. The first component is about

the connections between the dimension of posets and the size of matchings in com-

parability and incomparability graphs. In 1951, Hiraguchi proved that for any finite

poset P , the dimension of P is at most half of the number of points in P . We develop

some new inequalities for the dimension of finite posets. These inequalities are then

used to bound dimension in terms of the maximum size of matchings. We prove that

if the dimension of P is d and d is at least 3, then there is a matching of size d in the

comparability graph of P , and a matching of size d in the incomparability graph of

P . The bounds in above theorems are best possible, and either result has Hiraguchi’s

theorem as an immediate corollary.

In the second component, we focus on an extremal graph theory problem whose

solution relied on the construction of a special kind of posets. In 1959, Paul Erdős,

in a landmark paper, proved the existence of graphs with arbitrarily large girth and

arbitrarily large chromatic number using probabilistic method. In a 1991 paper of Kř́ıž

and Nešetřil, they introduced a new graph parameter eye(G). They show that there

are graphs with large girth and large chromatic number among the class of graphs

having eye parameter at most three. Answering a question of Kř́ıž and Nešetřil, we

were able to strengthen their results and show that there are graphs with large girth

and large chromatic number among the class of graphs having eye parameter at most

two.

The last component is about random poset—the poset version of the Erdős–Rényi

random graph. In 1991, Erdős, Kierstead and Trotter (EKT) investigated random

vi



height 2 posets and obtained several upper and lower bounds on the dimension of the

random posets. Motivated by some extremal problems involving conditions which

force a poset to contain a large standard example, we were compelled to revisit this

subject. Our sharpened analysis allows us to conclude that as p approaches 1, the

expected value of dimension first increases and then decreases, a subtlety not identified

in EKT. Along the way, we establish connections with classical topics in analysis as

well as with latin rectangles. Also, using structural insights drawn from this research,

we are able to make progress on the motivating extremal problem with an application

of the asymmetric form of the Lovász Local Lemma.

vii



CHAPTER I

INTRODUCTION

In this chapter, we introduce some basic notation and terminology for graphs and

partially ordered sets.

1.1 Basic notation for graphs

A (simple) graph G is an ordered pair (V,E), where V is a set and E is a 2-elements

subset of V . V is called the vertex set of G, and E is called the edge set of G. The

elements of V are the vertices of G, the elements of E are the edges of G. A graph

is finite if it contains finite number of vertices. In this dissertation, we focus only on

finite graphs.

Given a graph G, a vertex v of G is incident with an edge e if v ∈ e. An edge

{x, y} in E is usually written as xy. Two vertices x, y of G are adjacent if xy is an

edge of G. If all the vertices of G are pairwise adjacent, then G is called a complete

graph.

We say G′ = (V ′, E ′) is a subgraph of G = (V,E), denoted by G′ ⊆ G, if V ′ ⊆ V

and E ′ ⊆ E. G′ is an induced subgraph of G if G′ ⊆ G and G′ contains all the edge

xy ∈ E with x, y ∈ V ′.

Let NG(v) (or simply N(v)) denote the set of neighbors of a vertex v in G, i.e.,

NG(v) = {u : uv is an edge in G}. The degree of a vertex v, denoted by degG(v) (or

simply deg(v)), is equal to |N(v)|. A vertex of degree 0 is said to be isolated. δ(G)

and ∆(G) are, respectively, the minimum degree and the maximum degree of vertices

in G.

A path is a non-empty graph P = (V,E) where V consists of distinct vertices

v0, v1, . . . , vn and E = {v0v1, v1v2, . . . , vn−1vn}. Such path is called a v0–vn path. The
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length of a path is the number of edges it contains. A cycle is a closed path where

v0 = vn. A graph is acyclic if it does not contain any cycles. Similarly the length of

a cycle is the number of edges it contains.

Given a graph G, the distance dG(x, y) (or simple d(x, y)) of two vertices x and

y is the length of the shortest x–y paths in G. If there is no x–y path in G, then

d(x, y) =∞. A graph G is connected if every pair of vertices of G has finite distance.

An acyclic graph is called a forest. A connected forest is a tree. The degree 1

vertices of a tree are leaves.

For additional background material on graph theory, the readers are referred to

Diestel’s text [13].

1.2 Basic notation for partially ordered sets

A partially ordered set, or a poset P , is an ordered pair (X,R), where X is a set and

R is a reflexive, antisymmetric and transitive binary relation defined on X. We call

X the ground set and R is a partial order on X. Elements of X are called points.

We write x < y or y > x when (x, y) ∈ R. The poset is finite if the ground set X is

a finite set. In this dissertation, we focus only on finite posets.

Given a poset P and x, y ∈ P with x 6= y, we say x and y are incomparable in

P , denoted by x ‖ y, if x 6> y and y 6> x in P . Define Inc(P ) to be the set of all

incomparable pairs in P . Note that Inc(P ) is a symmetric, irreflexive binary relation.

We say x and y are comparable in P , denoted by x ⊥ y, if either x > y or y > x in P .

A point x ∈ P is called a minimal element (maximal element, resp.) if there is no

y ∈ P such that y < x (x < y, resp.) in P . We denote Min(P ) (Max(P ), resp.) be

the set of all minimal elements (maximal elements, resp.) in P . We say Q = (Y, S)

is a subposet of P = (X,R), if Y is a non-empty subset of X, and the restriction of

R on Y is S.

A poset P is called a chain, if x and y are comparable for any two distinct points
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x, y ∈ P . Dually, A poset P is called an antichain, if x and y are incomparable for

any two distinct points x, y ∈ P . A chain C is a maximum chain in P if there are no

chains in P contain more points than C. A chain C is a maximal chain in P if there

are no other chains in P contain C. Maximum and maximal antichains are defined

dually. The height of P is the number of points in a maximum chain in P , while the

width of P is the number of points in a maximum antichain in P .

When x ∈ P , we write D(x) for the set {y ∈ P : y < x in P}, while U(x) is the

set {y ∈ P : y > x in P}. When A is a maximal antichain in P , D(A) consists of all

x ∈ P for which there is some a ∈ A with x < a in P . Dually, U(A) consists of all

x ∈ P for which there is some a ∈ A with x > a in P . Evidently, D(A) ∩ U(A) = ∅.

Given a poset P and two distinct points x, y ∈ P , we say x is covered by y (or y

covers x) if x < y in P , and there is no z ∈ P such that x < z < y in P . We can then

associate with the poset P a cover graph G on the same ground set as P , so that xy

is an edge in G if and only if x covers y in P or y covers x in P .

It is convenient to specify a finite poset by a suitably drawn diagram of the

cover graph in the Euclidean plane. Whenever x < y in P , we require the vertical

coordinate of x be smaller than the vertical coordinate of y. Such diagrams are called

Hasse diagrams (or order diagrams).

In Figure 1, we illustrate an order diagram of a poset P on 15 points with

height(P ) = 5 and width(P ) = 6. Observe that:

1. a is covered by g in P ;

2. a < c in P ;

3. k ‖ c in P ;

4. k ⊥ m in P ;

5. Max(P ) = {c, d, e, g, k, l} and Min(P ) = {a, h, j,m};
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Figure 1: An order diagram of a poset P on 15 points

6. U(a) = {c, d, e, f, g, o};

7. D(g) = {a, b,m};

8. {e, f, j} is a maximal chain;

9. {m, b, n, i, c} is a maximum chain;

10. {n, k, g, f} is a maximal antichain;

11. {c, l, d, e, k, g} is a maximum antichain.
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CHAPTER II

DIMENSION AND MATCHINGS IN COMPARABILITY

AND INCOMPARABILITY GRAPHS

2.1 Introduction

In this chapter, we focus on combinatorial problems associated with order diagrams,

comparability graphs and incomparability graphs.

When P is a poset, the comparability graph GP of P is the graph whose vertex set

is the ground set of P with xy an edge in GP if and only if x and y are distinct compa-

rable points in P . Dually, the incomparability graph HP of P is just the complement

of GP , i.e. xy is an edge in HP if and only if x and y are distinct incomparable points

in P .

In Figure 2, GP and HP are, respectively, the comparability graph and the incom-

parability graph of poset P on the left hand side.

Dimension is one of the most important notions in poset theory. The dimension

of a poset P , denoted dim(P ), is the least positive integer d for which there is a family

R = {L1, L2, . . . , Ld} of linear extensions of P so that x ≤ y in P if and only if x ≤ y

e

d

b

c

a

P GP

e

d

b

c

a

HP

e

d

b

c

a

Figure 2: Comparability graph and incomparability graph
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in Li for each i ∈ {1, 2, . . . , d}. Alternatively, the dimension of P is the least positive

integer d for which there is a family R = {L1, L2, . . . , Ld} of linear extensions of P

so that P = L1 ∩ L2 ∩ · · · ∩ Ld.

Dimension is monotone, i.e., if Q is a subposet of P , then dim(Q) ≤ dim(P ). The

next result, due to Hiraguchi [24], is fundamental to our subject.

Theorem 2.1.1. Let P be a poset with at least two points. If x ∈ P , then dim(P ) ≤

1 + dim(P − {x}).

We view the preceding theorem as asserting that dimension is “continuous”, i.e.,

small changes in the poset can only make small changes in dimension.

Let P be a poset. dim(P ) = 1 if and only if P is a chain. Clearly a chain has

dimension 1. On the other hand, an antichain of size two or larger has dimension 2.

So P does not contain any antichains.

We use the notation P ∗ for the dual of P , i.e., P ∗ has the same ground set as P

with x > y in P ∗ if and only if x < y in P . Similarly, when L is a linear extension of

P , let L∗ denote the dual of L with the property that x > y in L if and only if x < y

in L∗. Note that L is a linear extension of P if and only if L∗ is a linear extension of

P ∗. It then implies dim(P ) = dim(P ∗).

The following result is due to Dushnik and Miller [16].

Theorem 2.1.2. Let P be a poset. Then dim(P ) ≤ 2 if and only if the incomparability

graph of P is also a comparability graph.

Note that if poset Q = L1 ∩ L∗2 where R = {L1, L2} is a realizer of P , then the

incomparability graph of P is the comparability graph of Q.

A poset P (with at least two points) is irreducible when dim(P − {x}) < dim(P )

for every x in P . An irreducible poset P is d-irreducible if dim(P ) = d. The only

1-irreducible poset is a single point. The only 2-irreducible poset is a 2-element

antichain. A full listing of all 3-irreducible posets has been assembled by Kelly [27]
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Gn ;n ≥ 3 Jn ;n ≥ 3 Hn ;n ≥ 2

Figure 3: Families of 3-irreducible posets

and by Trotter and Moore [45]. These posets are illustrated in Figures 3 and 4. The

posets shown in Figure 3 constitute seven infinite families, while the posets shown in

Figure 4 are “miscellaneous” examples. In cases where a 3-irreducible poset is not

self-dual, only one of the two instances is included in these figures.

When n ≥ 8, inspection of the posets illustrated in Figures 3 and 4 shows that the

number of 3-irreducible posets on n points is at most 7 (all posets in Figure 4 have

at most 7 points). On the other hand, for each d ≥ 4, Trotter and Ross [46] showed

that there is a constant cd > 1 and an integer nd so that for n ≥ nd, the number

of d-irreducible posets on n points is more than cn
2

d . As a consequence, there are no

complete listings for d-irreducible posets when d ≥ 4.
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B C D

CX1 CX3CX2

EX2EX1 FX1

FX2

Figure 4: Miscellaneous examples of 3-Irreducible posets

The remainder of this chapter is organized as follows. In the next section, we

provide some essential background material, and introduce Hiraguchi’s inequality. In

Section 2.3, we provide a brief sketch of related work which serves to motivate the

research reported here. In section 2.4, we introduce our main theorems–one chain

matching theorem and one antichain matching theorem. In Section 2.5, we prove

three new inequalities for dimension. The first is elementary, but the second and

third are more substantive, and they are the key ingredients of the proofs for our

matching theorems. In Section 2.6, we discuss chain matchings and prove the chain

matching theorem. At the close of this section, we explain why there is no analogue

for matchings in the cover graph. In Section 2.7, we prove the antichain matching

theorem.
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Figure 5: Defining linear extensions using blocks

2.2 Hiraguchi’s Inequality

Before introducing the Hiraguchi’s Inequality, we need the following notation.

When P is a poset, we use |P | to denote the number of elements in the ground set

of P . Subposets of P are identified just by specifying their ground sets. For example,

if x and y are distinct elements of P , P − {x, y} is just the subposet obtained when

x and y are removed from P . When S is a subposet of P and L is a linear extension

of P , L(S) denotes the restriction of L to S.

Define blocks to be disjoint subsets of vertex set of P . Blocks will be used to

define a linear extension of P . In Figure 5, we show a poset P . For this poset, define

blocks B1 = {a, e, f, h, j}, B2 = {b, g, k}, B3 = {i, l} and B4 = {c, d}. Then set

L2 = [j < a < b < k < h < g] and L4 = [b < k < d < c]. In this dissertation, we use

notation such as

L = [B1 < u1 < L2(B2) < u2 < B3 < u3 < L4(B4)]

to define a linear extension of P . Technically speaking, we have not precisely defined

a particular linear extension, since we intend that the choice of the extension on the

blocks B1 and B3 is arbitrary.

In 1951, Hiraguchi [24] proved the following key lemma. A proof is provided here

as the basic idea is essential for several of our proofs to follow.
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Lemma 2.2.1. If C is a chain in a poset P , then there exists a linear extension L

of P so that u > v in L for every (u, v) ∈ Inc(P ) with u ∈ C.

Proof. Label the points in the chain C as u1 < u2 < · · · < us. Then partition the

points in P −C into blocks B1, B2, . . . , Bs+1 where an element v from P −C belongs

to B1 if v 6> u1; otherwise v belongs to Bj+1 where j is the largest integer so that

v > uj. Then set

L = [B1 < u1 < B2 < u2 < B3 < · · · < Bs < us < Bs+1].

It is clear that L satisfies the requirement of the lemma.

Returning to the poset shown in Figure 5, we see that the previous discussion

regarding this poset serves to illustrate the application of Lemma 2.2.1 to the chain

C = {u1, u2, u3}. However, as we will use this technique later, we elected to also

specify how the linear extension L would order blocks B2 and B4.

It is useful to view the construction in Lemma 2.2.1 as pushing the chain C “up”

while forcing all elements of P − C “down” as low as possible relative to C, so we

say that the resulting linear extension puts C “over” P − C. Also, there is a dual

form of this lemma, i.e., there is a linear extension L with u > v in L whenever

(u, v) ∈ Inc(P ) and v ∈ C. This extension puts P − C “over” C.

Hiraguchi noted in [24] that when Lemma 2.2.1 is used for each chain in a mini-

mum chain cover provided by Dilworth’s theorem, there is a natural upper bound of

dimension.

Lemma 2.2.2. If P is a poset, then dim(P ) ≤ width(P ).

The principal result in [24] is the following upper bound.

Theorem 2.2.3. [Hiraguchi’s Inequality] If P is a poset, then dim(P ) ≤ |P |/2, when

|P | ≥ 4.

10
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Figure 6: Two small indecomposable posets with width at least 3

Hiraguchi’s original 1951 proof of this inequality was relatively complicated. In

1955, he gave an updated and somewhat streamlined proof [25], and in 1974, Bogart

gave a more polished version [9]. Subsequently, Kimble [30] and Trotter [39] discovered

the following inequality, and this result yields an elegant proof of Hiraguchi’s theorem.

Theorem 2.2.4. If A is an antichain in a poset P , then dim(P ) ≤ max{2, |P −A|}.

Proof. It is straightforward to check that dim(P ) ≤ 2 when |P − A| ≤ 1. For the

case |P − A| = 2. If the inequality fails, then there is a 3-irreducible (and therefore

indecomposable) poset, having width at least 3 (by Lemma 2.2.2) and consisting of

an antichain plus at most 2 other points. Note that such posets do not have any

maximum or minimum points. There are only two (up to duality) posets satisfying

these requirements. These two posets are shown in Figure 6. It is an easy exercise to

show that both of these posets have dimension 2. On the other hand, this can also be

done by checking the full list of 3-irreducible posets. Now assume the assertion is true

for |P −A| = k ≥ 2. For the case |P −A| = k+ 1, let Q = P −{x} where x ∈ P −A.

Then |Q − A| = k and by our assumption, we have dim(Q) ≤ max{2, |Q − A|}. It

follows that dim(P ) ≤ dim(Q) + 1 ≤ max{2, |Q − A|} + 1 ≤ max{2, |P − A|} using

Theorem 2.1.1.
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2.3 The Removable Pair Conjecture

When |P | ≥ 3, a distinct pair {x, y} is called a removable pair if dim(P ) ≤ 1 +

dim(P −{x, y}). When dim(P ) = 3, every distinct pair of points is a removable pair.

(This can be verified by checking the full list of 3-irreducible posets in Figure 3 and

Figure 4.) However, when dim(P ) ≥ 4, no comparable pair in the standard example

Sd is a removable pair. Also, among the incomparable pairs, only the critical pairs

are removable.

Conjecture 2.3.1. [The Removable Pair Conjecture] If P is a poset and |P | ≥ 3,

then P has a removable pair, i.e., there exist distinct elements x and y in P so that

dim(P ) ≤ 1 + dim(P − {x, y}).

Although its origins have been obscured with the passage of time, the Removable

Pair Conjecture (RPC) has been investigated by researchers for more than 60 years.

The first published reference to the RPC seems to be in a 1975 paper of Trotter [39].

We also note that the RPC was one of the “Unsolved Problems”, assembled by the

editorial board of Order and appearing for more than 10 years in each issue of the

journal (see [28]).

If the RPC holds, then a simple inductive proof of Hiraguchi’s theorem could be

obtained just by establishing the base case: dim(P ) ≤ 2 when |P | ≤ 5. This is an

easy exercise, as a counterexample would have to be an indecomposable poset with

width at least 3. Same as before, there are only two such posets, the ones shown in

Figure 6, and both have dimension 2.

Here are two of many conditions which guarantee that a pair is removable. The

first result is due to Hiraguchi [24] while the second is part of the folklore of the

subject, although it is implicit in Theorem 7.4 as presented in [42]. We provide a

short proof since this result will be quite useful to us in proving our main theorems

later.
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Theorem 2.3.2. Let P be a poset with |P | ≥ 3, let a and b be distinct points in P

with a ∈ Min(P ) and b ∈ Max(P ). If a ‖ b in P , then {a, b} is a removable pair.

Proof. Let Q = P − {a, b}, let t = dim(Q) and let F = {L1, L2, . . . , Lt} be a realizer

of Q. For each i ∈ {1, 2, . . . , t}, let Ri = [a < Li < b]. Then set

Rt+1 = [D(b) < b < Q−D(b)− U(a) < a < U(a)].

Evidently, {R1, R2, . . . , Rt, Rt+1} is a realizer of P so that dim(P ) ≤ 1 + dim(Q).

Theorem 2.3.3. Let P be a poset with |P | ≥ 3, let a and a′ be distinct minimal

elements in P . If U(a) ⊆ U(a′), then {a, a′} is a removable pair.

Proof. Let Q = P −{a, a′}, let t = dim(Q) and let F = {L1, L2, . . . , Lt} be a realizer

of Q. For each i ∈ {1, 2, . . . , t}, let Ri = [a < a′ < Li]. Then set

Rt+1 = [Q− U(a′) < a′ < U(a′)− U(a) < a < U(a)].

Evidently, {R1, R2, . . . , Rt, Rt+1} is a realizer of P so that dim(P ) ≤ 1 + dim(Q).

Several strong versions of the RPC conjecture have been proposed, and some

of these have been disproved. Bogart [8] suggested that a removable pair {x, y}

could always be found among the elements of Max(P )∪Min(P ). This was disproved

by Trotter and Monroe [44] who constructed for each t ≥ 1, a poset Pt so that

|P | = (3t+1)2+(6t+2), dim(P ) = 4t+2, and dim(P −{x, y}) = 4t for every distinct

pair x, y ∈ Max(P ) ∪ Min(P ). Subsequently, Bogart and Trotter conjectured [43]

that every critical pair was removable, a result motivated by their work on interval

dimension. However, this form of the RPC was disproved by Reuter [36]. Reuter’s

counterexample, shown in Figure 7, is a 4-dimensional poset P on 12 points. Note

that (x, y) forms a critical pair in P whose removal will decrease the dimension of P by

2. i.e., dim(P − {x, y}) = 2. Subsequently, Kierstead and Trotter [29] gave a general

construction (also shown in Figure 7) which shows that for every d ≥ 5, there is a poset

Pd containing a critical pair (x, y) so that dim(Pd) = d and dim(Pd−{x, y}) = d− 2.
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Figure 7: Critical pairs need not be removable

We note that it is still open to determine whether every poset P with |P | ≥ 3

contains some critical pair which is removable.

Although the RPC remains open, there are some useful removal theorems which

are more general. We say that two pairwise disjoint chains C and C ′ in a poset P are

incomparable when x ‖ y in P for every x ∈ C and y ∈ C ′. The following results are

due to Hiraguchi [24]. The first is a straightforward generalization of Lemma 2.2.1 to

two incomparable chains. The second is an immediate corollary of the first.

Lemma 2.3.4. Let C1 and C2 be non-empty incomparable chains in a poset P . Then

there exist linear extensions L and L′ of P so that

1. C1 is over P − C1 and P − C2 is over C2 in L, and

2. C2 is over P − C2 and P − C1 is over C1 in L′.

Lemma 2.3.5. Let C1 and C2 be non-empty incomparable chains in a poset P . If

there is some point of P which does not belong to either chain, then dim(P ) ≤ 2 +

dim(P − (C1 ∪ C2)).

Combining Theorem 2.2.4 with Theorem 2.3.3 and Lemma 2.3.5, we have the

following simple proof to Hiraguchi’s inequality.
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Proof of Theorem 2.2.3. Suppose the theorem is false and we choose a counterexam-

ple P with |P | as small as possible. Then P is irreducible, and therefore indecom-

posable. Let d = dim(P ). Since P is a counterexample, we have d > |P |/2. By

appealing to the full list of 3-irreducible posets in Figure 3 and Figure 4, d is at least

4. Then Theorem 2.2.4 implies |P | is at least 8.

Let a and a′ be distinct minimal elements in P . If U(a) ⊆ U(a′), then by Theo-

rem 2.3.3, we have

|P |/2 < d = dim(P ) ≤ 1 + dim(P − {a, a′}) ≤ 1 + |P − {a, a′}|/2 = |P |/2.

Hence we have U(a) 6⊆ U(a′). Similarly, we have U(a′) 6⊆ U(a). So there exist

b, b′ ∈ P such that b ∈ U(a) − U(a′) and b′ ∈ U(a′) − U(a). Let C1 = {a < b} and

C2 = {a′ < b′} be two chains in P . Note that C1 and C2 are two incomparable chains.

By Lemma 2.3.5, we have

|P |/2 < d = dim(P ) ≤ 2 + dim(P − (C1 ∪ C2)) ≤ 2 + |P − (C1 ∪ C2)|/2 = |P |/2.

The contradiction completes the proof of Theorem 2.2.3.

2.4 Statements of Main Theorems

Our principal theorem bounds the dimension of a poset P by the maximum size of

matchings in comparability graph GP and incomparability graph HP .

Theorem 2.4.1. Let P be a poset and let GP and HP be, respectively, the compara-

bility graph and the incomparability graph of P . If dim(P ) = d ≥ 3, then there is a

matching of size d in GP , and there is a matching of size d in HP .

As our primary focus is on the combinatorial properties of posets, we define a chain

matching in a poset P as a family of pairwise disjoint 2-element chains in P . Dually,

an antichain matching in P is a family of pairwise disjoint 2-element antichains in P .

As the statements require separate proofs, we elect to restate Theorem 2.4.1 as two

theorems, one for chain matchings and the other for antichain matchings.

15



Theorem 2.4.2. [Chain Matching Theorem] Let P be a poset. If dim(P ) = d ≥ 3,

then P has a chain matching of size d.

Theorem 2.4.3. [Antichain Matching Theorem] Let P be a poset. If dim(P ) = d ≥

3, then P has an antichain matching of size d.

Notice that these statements in Theorem 2.4.2 and Theorem 2.4.3 are not true

when d ≤ 2, as a 2-element antichain has a chain matching of size 0 and an antichain

matching of size 1. For d = 3, it is straightforward to check that every 3-irreducible

poset (see Figure 3 and 4) has both a chain matching of size 3 and an antichain

matching of size 3. As a consequence, when presenting the proofs of two matching

theorems, we will restrict our attention to posets with dimension at least 4.

Also note that Hiraguchi’s inequality (Theorem 2.2.3) is an immediate corollary of

either Theorem 2.4.2 or Theorem 2.4.3, as points in P which form a chain matching

or an antichain matching are distinct.

We comment that there are other well-known instances of combinatorial problems

with analogous statements for chains and antichains. For example, we have Dilworth’s

classic theorem [14] and the dual statement due to Mirsky [34].

Theorem 2.4.4. [Dilworth] A poset of width w can be partitioned into w chains.

Theorem 2.4.5. [Mirsky] A poset of height h can be partitioned into h antichains.

Second, we have the considerable strengthening of Dilworth’s theorem due to

Greene and Kleitman [23], with the dual result due to Greene [22].

Theorem 2.4.6. [Greene-Kleitman] Let P be a poset. Then for every k ≥ 1, there is

a chain partition P = C1∪C2∪· · ·∪Ct so that for i = k and i = k+ 1, the maximum

size of a subposet Q of P with height(Q) ≤ i is
∑t

j=1 min{i, |Cj|}.

Theorem 2.4.7. [Greene] Let P be a poset. Then for every k ≥ 1, there is an

antichain partition P = A1 ∪ A2 ∪ · · · ∪ As so that for i = k and i = k + 1, the

maximum size of a subposet Q of P with width(Q) ≤ i is
∑s

j=1 min{i, |Aj|}.
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More recently, we have the following theorem proved by Duffus and Sands [15],

with the dual result due to Howard and Trotter [26].

Theorem 2.4.8. [Duffus-Sands] Let n and k be integers with n ≥ k ≥ 3, and let P

be a poset. If n ≤ |C| ≤ n + (n − k)/(k − 2) for every maximal chain C in P , then

P has k pairwise disjoint maximal antichains.

Theorem 2.4.9. [Howard-Trotter] Let n and k be integers with n ≥ k ≥ 3, and let

P be a poset. If n ≤ |A| ≤ n+ (n− k)/(k − 2) for every maximal antichain A in P ,

then P has k pairwise disjoint maximal chains.

As is the case with Dilworth’s theorem and its dual, the theorem for chain match-

ings is more challenging than the theorem for antichain matchings, and we do not

know of any “perfect graph” underpinning that makes the two results equivalent. In

section 2.6, we will also show that our chain matching theorem cannot be extended to

cover graphs by showing that there is a d-dimensional poset for which the maximum

size of a matching in the cover graph is O(log d).

2.5 Three New Inequalities for Dimension

In [39], Trotter proved the following inequality.

Theorem 2.5.1. Let P be a poset which is not an antichain, and let w = width(P −

Max(P )). Then dim(P ) ≤ w + 1.

This inequality is tight for all w ≥ 1, and we refer the reader to [39] for details.

In this same paper, Trotter also proved the following inequality.

Theorem 2.5.2. Let A be a maximal antichain in a poset P which is not a chain,

and let w = width(P − A). Then dim(P ) ≤ 2w + 1.

It is more complicated to show that the above inequality is tight, and the argument

is presented in a separate paper [38]. In the context to follow, we will strengthen both

results.
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2.5.1 New Inequalities for Dimension

In order to prove our main theorems, we will need a straightforward extension of

Theorem 2.5.2.

Theorem 2.5.3. Let D be a non-empty down set in a poset P such that the up set

U = P−D is also non-empty. If dim(D) = t and width(U) = w, then dim(P ) ≤ t+w.

Proof. Since width(U) = w, there is a partition of U into w chains. Let U = C1 ∪

C2 ∪ · · · ∪ Cw. Since dim(D) = t, let F = {L1, L2, . . . , Lt} be a realizer of D. For

each i ∈ {1, 2, . . . , t}, let Ri = [Li < U ]. Then for each j ∈ {1, 2, . . . , w}, let Rt+j

be a linear extension which puts P − Cj over Cj. Now we show {R1, R2, . . . , Rt+w}

is a realizer of P . Let (x, y) be any incomparable pair in P . If y ∈ Cj, then x > y

in Rt+j. If y ∈ D and x ∈ U , then x > y in R1. If y ∈ D and x ∈ D, then there

exists an i such that x > y in Li. Hence x > y in Ri. Indeed, {R1, R2, . . . , Rt+w} is a

realizer of P .

Note that the inequality in the preceding theorem is tight. Let P be the standard

example Sn(n ≥ 3). Let U ⊆ Max(Sn) where 1 ≤ |U | ≤ n− 2. Then U is an up set.

Let D = P−U be a down set. It is easy to see that dim(D) = n−|U | = n−width(U).

Hence dim(D) + width(U) = n = dim(P ).

Of course, there is a dual version of Theorem 2.5.3 in which the roles of U and D

are reversed. i.e., let U be a non-empty up set in a poset P such that the down set

D = P−U is also non-empty. If dim(U) = t and width(D) = w, then dim(P ) ≤ t+w.

The next theorem provides a condition under which the inequality dim(P ) ≤

1 + width(P −Max(P )) in Theorem 2.5.1 can be improved. Although this result is

somewhat technical, it is an essential ingredient of proofs to follow.

Theorem 2.5.4. Let P be a poset and let Q = P −Max(P ). If width(Q) = w ≥ 2,

and there is a point x ∈ Q so that width(Q− {x}) = w − 1, then dim(P ) ≤ w.
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Proof. We argue by contradiction and assume that P is a counterexample of minimum

size. Then P is (w + 1)-irreducible.

Let C1 ∪ C2 ∪ · · · ∪ Cw−1 ∪ {x} be a chain cover of Q = P − Max(P ). Setting

Cw = {x}, we apply Lemma 2.2.1 to choose for each i ∈ {1, 2, . . . , w}, a linear

extension Li which puts Ci over P − Ci. We then modify Lw−1 and Lw to form

L′w−1 and L′w and show that the family F ′ = {L1, L2, . . . , Lw−2, L
′
w−1, L

′
w} must be a

realizer of P .

Let Cw−1 = {u1 < u2 < · · · < us}. The point x must be incomparable with at

least one point of Cw−1; else Cw−1 ∪ {x} is a chain and width(Q) ≤ w − 1.

Then let A1 = Max(P ) ∩ U(x) and A2 = Max(P )− A1. Then set

L′w−1 = [Lw−1(P − A2) < L∗w−1(A2)].

Note that since A2 ⊆ Max(P ), L′w−1 is well defined. Now in forming the linear

extension Lw, there are only two blocks, and to distinguish these from the blocks

appearing in Lw−1, we denote these as S1 and S2. Let S1 = P − U(x) − {x}, and

S2 = U(x). Now set

L′w = [Lw−1(S1) < x < Lw−1(S2 − A1) < L∗w−1(A1)].

By our assumption, dim(P ) = w+1. The family F ′ = {L1, L2, . . . , Lw−2, L
′
w−1, L

′
w}

cannot be a realizer of P . Hence there is some critical pair (u, v) ∈ Crit(P ) with u < v

in each of the w linear extensions in F ′. Clearly, there is no i with 1 ≤ i < w − 2

for which u ∈ Ci, otherwise we have u > v in Li. Now suppose that u ∈ Cw−1. Since

u > v in Lw−1 and u < v in L′w−1, we must have v ∈ A2. This implies that v ‖ x in

P , so that v belongs to block S1 in Lw. If u ∈ S2, then u > x > v in L′w. If u ∈ S1,

then u > v in Lw−1 implies u > v in L′w.

If u = x, then u ‖ v implies v ∈ S1. It follows that u > v in L′w.

Finally, suppose that u ∈ Max(P ). Since (u, v) ∈ Crit(P ), we also have v ∈

Max(P ). First we assume u ∈ A1. u < v in L′w implies v ∈ A1 and u > v in Lw−1.

19



Pd

...x
1

x
2

xd - 1

a
0

...y
1

y
2

yd - 1

...a
1

a
2 ad - 1

ad

Figure 8: Posets witness that the inequality in Theorem 2.5.4 is tight

Hence we have u > v in L′w−1. So we must have u ∈ A2. u < v in L′w−1 implies v ∈ A2

and u > v in Lw−1. Note A2 ⊆ S1, it follows that u > v in L′w. The contradiction

completes the proof of Theorem 2.5.4.

2.5.2 The Inequality of Theorem 2.5.4 is Tight

We show in Figure 8 a family of posets {Pd : d ≥ 3}. Observe that the following

properties hold:

1. Max(Pd) = {a0, a1, a2, . . . , ad}.

2. width(Pd −Max(Pd)) = d− 1.

3. M = {{xi < yi} : 1 ≤ i ≤ d − 1} is a chain matching in P , but it is not

maximum.

We now show that dim(Pd) = d for all d ≥ 3. Accordingly, this shows that the

inequality dim(P ) ≤ 1 + width(P −Max(P )) is best possible. However, it also shows

that the condition of Theorem 2.5.4 cannot be weakened, since the chains covering

Pd −Max(Pd) have size 2.

Suppose to the contrary that dim(P ) ≤ d − 1. We note that the subposet of Pd

determined by the points in {xi : 1 ≤ i ≤ d− 1} ∪ {ai : 1 ≤ i ≤ d− 1} is isomorphic

to the standard example Sd−1, so we must then have dim(Pd) = d − 1. Now let
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F = {L1, L2, . . . , Ld−1} be a realizer of Pd. We may assume that the linear extensions

in F have been labeled so that xi > ai in Li for each i ∈ {1, 2, . . . , d − 1}. Then for

all i, j ∈ {1, 2, . . . , d− 1} with i 6= j, we have

xj < yj < ai < xi < yi < a0 in Li.

Since ad ‖ yj for j ∈ {1, 2, . . . , d − 1} and ad > xi for each i ∈ {1, 2, . . . , d − 1}, we

must therefore have xi < ad < yi < a0 in Li for each i ∈ {1, 2, . . . , d − 1}. This is a

contradiction since F does not reverse the incomparable pair (ad, a0).

Note that P3 is not irreducible, as P3 − {a1, a2} is isomorphic to the dual of the

poset D shown in Figure 4. This poset is traditionally called the “chevron”. However,

for each d ≥ 4, the poset Pd is d-irreducible.

2.5.3 An Inequality Involving Matchings

Here is another result which gives a condition under which the the inequality dim(P ) ≤

1 + width(P −Max(P )) of Theorem 2.5.1 can be tightened.

When M is a maximum chain matching in a poset P , we let A(M) denote the

set of all points in P which are not covered by the chains in M. Evidently, A(M) is

an antichain.

Theorem 2.5.5. Let P be a poset which is not an antichain, and letM be a maximum

chain matching in P . If M has size m and A(M) ⊆ Max(P ) (or A(M) ⊆ Min(P )),

then dim(P ) ≤ max{2,m}.

Proof. We prove the case when A(M) ⊆ Max(P ), the other case of A(M) ⊆ Min(P )

is dual. We will argue by contradiction. We assume the conclusion of the theorem

is false and choose a counterexample P with |P | minimum. Let d = dim(P ), noting

that d ≥ 3. Set m = |M|. Since P is not an antichain, m ≥ 1.

Let Q = P − Max(P ). Then 1 ≤ width(Q) ≤ m < d. By Theorem 2.5.1, we

conclude m = width(Q) = d− 1, which forces m ≥ 2.
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Claim 1. A(M) = Max(P ).

Proof. Suppose to the contrary that there is a maximal element y so that y belongs

to a chain C in the matching M. Let x be the other point in C. It follows that

P −Max(P ) is covered by m chains, with one of the chains being the single point

{x}. Now Theorem 2.5.4 implies that dim(P ) ≤ m. The contradiction completes the

proof of the Claim 1.

Claim 2. dim(P − {u}) = d− 1 for every u ∈ Max(P ).

Proof. Let u ∈ Max(P ) and assume that dim(P − {u}) = d. By Claim 1, u does

not belong to any chains in M, therefore M is also a maximum chain matching in

P −{u}. It follows that P −{u} would be a counterexample, contradicting our choice

of P . The contradiction completes the proof of Claim 2.

Label the chains in M as {Ci = {xi < yi} : 1 ≤ i ≤ m}. Apply Lemma 2.2.1 for

each chain Ci to obtain a linear extension Li which puts Ci over P − Ci. Note that

in the construction of Li, there are three blocks which we denote Bi,1, Bi,2 and Bi,3

so that Li = [Bi,1 < xi < Bi,2 < yi < Bi,3]. For each i ∈ {1, 2, . . . ,m − 1}, we then

modify Li to form L′i by altering the order on the three blocks as follows:

L′i(Bi,j) = [Bi,j −Max(P ) < L∗m(Bi,j ∩Max(P ))] for j ∈ {1, 2, 3}.

Finally, we modify Lm to form L′m by setting:

L′m(Bm,j) = [Bm,j −Max(P ) < Lm(Bm,j ∩Max(P ))] for j ∈ {1, 2, 3}.

Note that elements always remain in the same block. We simply pull the maximal

elements to the top of the block and then order them in a manner that is dual to how

they are ordered in L′m.

Since P is a counterexample, the family F = {L′i : 1 ≤ i ≤ m} cannot be a

realizer of P , so there is a critical pair (u, v) ∈ Crit(P ) for which u < v in L′i for
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all i ∈ {1, 2, . . . ,m}. Since Li puts Ci over P − Ci, so does L′i. If u ∈ Ci for some

i ∈ {1, 2, . . . ,m}, then u > v in L′i. Hence we have u ∈ Max(P ), and in turn this

forces v ∈ Max(P ).

Since dim(P −{u}) = d− 1 by Claim 2, u cannot be a loose point of P . We know

that the maximal element u is not a minimal element of P , so u > xi in P for all

i ∈ {1, 2, . . . ,m}. Since (u, v) ∈ Crit(P ), we know that v > xi for all i ∈ {1, 2, . . . ,m}.

For every i ∈ {1, 2, . . . ,m}, since u, v > xi in P , we know that u, v belong to one

of Bi,2 and Bi,3. However, if u and v are in the same block in each L′i, then in L′1

they are ordered in reverse order to how they are ordered in L′m. So there must exist

a j ∈ {1, 2, ...,m} such that we have u ∈ Bj,2 and v ∈ Bj,3. This implies that v > yj.

However, this implies that the chain matching M is not maximum, since we could

replace Cj = {xj < yj} with C ′ = {xj < u} and C ′′ = {yj < v}. The contradiction

completes the proof of the theorem.

Again, the poset Pd illustrated in Figure 8 shows that the inequality in Theo-

rem 2.5.5 is tight. Here dim(Pd) = d, m = d and M = {{xi < yi} : 1 ≤ i ≤

d− 2} ∪ {xd−1 < ad} ∪ {yd−1 < a0}.

2.6 Chain Matchings

Let M be a maximum chain matching in a poset P . As in the preceding section, we

let A(M) denote the antichain consisting of the points in P which are not covered

by chains in M. If A(M) = ∅, then dim(P ) ≤ width(P ) ≤ m, so our focus in this

section will be on posets for which A(M) is a non-empty antichain. In this case, we

then let U(M) denote the set of all chains C ∈ M for which there is an element

a ∈ A(M), an integer s ≥ 1 and a sequence {Ci = {xi < yi} : 1 ≤ i ≤ s} of distinct

chains in M so that (1) y1 > a in P , (2) yi+1 > xi in P whenever 1 ≤ i < s and

(3) C = Cs. Dually, D(M) denotes the set of all chains C ′ ∈M for which there is an

element a′ ∈ A(M), an integer s′ ≥ 1 and a sequence {C ′i = {x′i < y′i} : 1 ≤ i ≤ s′} of
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Figure 9: Characterizing chains in a maximum matching

distinct chains inM so that (1) x′1 < a′ in P , (2) x′i+1 < y′i in P whenever 1 ≤ i < s′

and (3) C ′ = Cs′ .

In Figure 9, we show a poset P and a maximum chain matching M = {{xi <

yi} : 1 ≤ i ≤ 7}. It is easy to see that:

1. The chains {x1 < y1}, {x2 < y2}, {x3 < y3} and {x4 < y4} belong to U(M) ∩

D(M).

2. The chain {x5 < y5} belongs to U(M) but not to D(M).

3. The chain {x6 < y6} belongs to D(M) but not to U(M).

4. The chain {x7 < y7} does not belong to U(M) or to D(M).

2.6.1 Existence of Pure Maximum Chain Matchings

We say that a maximum chain matching M in P is pure if U(M) ∩ D(M) = ∅. A

maximum chain matchingM with A(M) ⊆ Max(P ) is pure since U(M) = ∅. Dually,

a maximum chain matching M with A(M) ⊆ Min(P ) is pure. On the other hand,

there are posets having no maximum chain matchingM for which A(M) is a subset

of Max(P ) or Min(P ). Nevertheless, all posets have pure maximum chain matchings,

as evidenced by the following Lemma, first exploited by Trotter in [40]. For the sake

of completeness, the elementary argument for this fact is included here.
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Lemma 2.6.1. Every poset has a pure maximum chain matching.

Proof. Let P be a poset. Choose a maximum chain matching M in P which maxi-

mizes the quantity q(M) defined by:

q(M) =
∑

a∈A(M)

|D(a)| (1)

We claim thatM is pure. To see this, suppose that there is a chain C ∈ U(M)∩

D(M). Then after a suitable relabeling of the chains in M, there are elements

a, a′ ∈ A(M) (not necessarily distinct), a positive integer r and a sequence {Ci =

{xi < yi} : 1 ≤ i ≤ r} of distinct chains from M so that y1 > a in P , xr < a′ in P

and yi+1 > xi in P whenever 1 ≤ i < r.

If a 6= a′, we could remove the r chains in the sequence fromM and replace them

by the following set of r + 1 chains:

{a < y1}, {xr < a′}, {{xi < yi+1} : 1 ≤ i < r}

This would contradict the assumption that M is a maximum chain matching in

P . We conclude that a = a′. In this case, we form a maximum chain matching M′

from M by replacing the chains in the sequence by the following set:

{xr < a}, {{xi < yi+1} : 1 ≤ i < r}

Now the antichain A(M′) is obtained from A(M) by replacing a by y1. Since a < y1,

we conclude that q(M′) ≥ q(M) + 1. The contradiction completes the proof of the

lemma.

Let M be any pure maximum chain matching in P . Then let U be the subposet

of P consisting of those points in P covered by chains in U(M). Let D = P − U .

Lemma 2.6.2. U is an up set in P , D is a down set in P .
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Proof. Fix an arbitrary point a ∈ U . For any point b with b > a in P , we show that

b ∈ U . Let Ca = {xa < ya} be the chain matching inM which covers a. If b ∈ A(M),

then Ca ∈ D(M), which contradicts the fact that M is pure. Hence b is covered by

chains in M. Let Cb = {xb < yb} be the chain matching in M which covers b. Since

b > a, we must have yb ≥ b > a ≥ xa. Then Ca ∈ U(M) implies Cb ∈ U(M) and

b ∈ U . Hence U is an up set, D = P − U is a down set.

2.6.2 The Proof of the Chain Matching Theorem

We are now ready to prove that a poset P with dim(P ) = d ≥ 4 has a chain matching

of size d. We argue by contradiction. Suppose this assertion is false and choose a

counterexample P with |P | minimum. Let u be any element of P . If dim(P −{u}) =

dim(P ), then P − {u} is also a counterexample, contradicting our choice of P . We

conclude that dim(P − {u}) = dim(P )− 1. Since u is arbitrary, it follows that P is

d-irreducible.

Let m be the maximum size of a chain matching in P . If m ≤ d−2, then P −{u}

is also a counterexample for any u ∈ P . Hence m = d − 1. Also, we note that P ∗,

the dual of P , is also a counterexample of minimum size. This observation allows us

to take advantage of duality in the arguments to follow.

Again, let M be any pure maximum chain matching in P . If A(M) ⊆ Max(P ),

then Theorem 2.5.5 implies that dim(P ) ≤ m. The contradiction shows that A(M) *

Max(P ). By duality, we also know that A(M) * Min(P ). This implies that U(M) 6=

∅ 6= D(M). Set

I(M) =M− (D(M) ∪ U(M)).

Taking advantage of duality, we can assume that |U(M)| ≤ |D(M)|. Since m =

d − 1 ≥ 3, it follows that m0 = |D(M) ∪ I(M)| ≥ 2. Then let U be the subposet of

P consisting of those points of P covered by chains in U(M). Let D = P − U . By

Lemma 2.6.2, U is an up set in P , D is a down set. Since U(M) 6= ∅ 6= D(M), both
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U and D are non-empty. Furthermore, the maximum size of a chain matching in D

is m0. Also, the chains in D(M) ∪ I(M) cover all points of D except the points in

A(M) which belong to Max(D). Then dim(D) ≤ m0 by Theorem 2.5.5.

On the other hand, the m−m0 chains in U(M) cover U , so width(U) ≤ m−m0.

Now Theorem 2.5.3 implies that dim(P ) ≤ dim(D)+width(U) ≤ m0+(m−m0) = m.

The contradiction completes the proof.

2.6.3 Chain matching theorem of 3-dimensional posets

It is possible to prove that a 3-dimensional poset has a chain matching of size 3

without using the knowledge about the full list of 3-irreducible posets. Here we need

another elementary result due to Baker, Fishburn and Roberts [3].

Theorem 2.6.3. If P is a planar poset and P has a unique minimal element and a

unique maximal element, then dim(P ) ≤ 2.

Traditionally, a unique minimal element of a poset is called a zero, while a unique

maximal element is called a one. Accordingly, the preceding result is usually phrased

as asserting that a planar poset with a zero and a one has dimension at most 2.

Now we are ready to prove the chain matching theorem for the case d = 3, without

appealing to the list of 3-irreducible posets.

Theorem 2.6.4. Let P be a poset. If dim(P ) = 3, then P has a chain matching of

size 3.

Proof. We argue by contradiction. We assume the conclusion of the above theorem

is false and choose a counterexample P with |P | minimum. Then P is irreducible,

therefore indecomposable. Note that width(P ) ≥ dim(P ) = 3. By Theorem 2.2.4, we

have |P | ≥ 3+width(P ) ≥ 6. LetM of size m be any pure maximum chain matching

in P . Since P is a counterexample, m is either 1 or 2. If A(M) ⊆ Max(P ) or A(M) ⊆

Min(P ), then Theorem 2.5.5 implies dim(P ) ≤ max{2,m} = 2. The contradiction
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implies A(M) 6⊆ Max(P ) and A(M) 6⊆ Min(P ). It then implies U(M) 6= ∅ 6= D(M).

As m ≤ 2, we conclude that |U(M)| = |D(M)| = 1.

Let U(M) = {a < b}, D(M) = {c < d}. Since |P | ≥ 6, |A(M)| ≥ 2. There exist

x, y ∈ A(M) such that x < b and y > c.

Case 1. x = y.

As |P | ≥ 6, there exists z ∈ A(M) and z 6= x. Note that z is incomparable to

a, x and d. It follows that either z < b and z ‖ c , or z ‖ b and z > c, or c < z < b.

Without loss of generality, we may assume z < b. Since {z < b}, {c < d} is a chain

matching of size 2, we have a ‖ x. Also {z < b}, {c < x} is a chain matching of size

2 implies a ‖ d.

If x ‖ d, then {a, d, x, z} is an antichain. Furthermore, no elements in P , except

b and c, are comparable to any elements in {a, d, x, z}. Therefore, P − {b, c} is an

antichain. It then follow from Theorem 2.2.4 that dim(P ) ≤ 2. The contradiction

implies x > d. Note that {z < b}, {d < x} is a chain matching of size 2 implies a ‖ c.

Similarly we have z ‖ c. Note that no elements in P , except b, are comparable to a

or z. Now {a, z} is an autonomous subposet of P , which contradicts the fact that P

is indecomposable.

Case 2. x 6= y.

As x 6= y, we may assume x ‖ c and y ‖ b. Note that M is a pure matching,

therefore b ∈ Max(P ) and c ∈ Min(P ). Since {x < b}, {c < y} is a chain matching

of size 2, we have a ‖ d. Also {x < b}, {c < d} is a chain matching of size 2 implies

a ‖ y. Similarly, we have x ‖ y, d. Note that no elements in P , except b and c, are

comparable to any elements in {a, d, x, y}. As {a, x} is not an autonomous subposet

of P , we must have a > c. Dually, we have d < b.

If |P | = 6 (Figure 10), then we can add a “zero” and a “one” to P so that

the resulting poset is still planar. It follows that dim(P ) ≤ 2 from Theorem 2.6.3.

Otherwise, |P | ≥ 7, and there exists z ∈ A(M) such that z 6= x, y. Note that z is
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Figure 10: The dimension of P is at most 2

incomparable to a, d, x and y. It follows that either z < b and z ‖ c , or z ‖ b and z > c,

or c < z < b. Without loss of generality, we may assume z < b. However, if z ‖ c,

then {z, x} is an autonomous subposet of P ; if z > c, then {z, a} is an autonomous

subposet of P . The contradiction completes the proof of Theorem 2.6.4.

2.6.4 Matchings in Cover Graphs

It is tempting to believe that our chain matching theorem can be strengthened by

requiring that the chains in the matching be covers. In this setting, a chain matching

M can be viewed as a matching in the cover graph. However, we will now show that

no such extension is possible.

Let k ≥ 2, and set d =
(
2k
k

)
. We construct a height 3 poset Pk which contains the

standard example Sd as a subposet, yet the largest matching in the cover graph of Pk

has size 2k. The minimal elements of Pk are labeled as a(S) where S is a k-element

subset of {1, 2, . . . , 2k}. Similarly, the maximal elements of Pk are labeled as b(T )

where T is a k-element subset of {1, 2, . . . , 2k}. There are 2k other elements of Pk and

these are labeled as m1,m2, . . . ,m2k. For each k-element subset S of {1, 2, . . . , 2k}

and each integer i with 1 ≤ i ≤ 2k, we have a(S) < mi and mi < b(S) if and only if

i ∈ S. It follows that that a(S) < b(T ) unless S and T are complementary subsets of
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{1, 2, . . . , 2k}. This shows that Pk contains the standard example Sd as a subposet.

On the other hand, there are no covers between minimal and maximal elements, so a

matching in the cover graph of Pk has size at most 2k.

Inverting parameters, it is clear that for large d, there is a poset P for which the

dimension of P is d, yet the largest matching in the cover graph of P has size O(log d).

The next theorem says that this bound is tight up to a multiplicative constant.

Theorem 2.6.5. For every m ≥ 1, if P is a poset and the maximum size of a

matching in the cover graph of P is m, then the dimension of P is at most (5m+2m)/2.

Proof. We argue by contradiction. Suppose the inequality fails for some m ≥ 1 and

let P be a counterexample of minimum size. Then let M be a maximum matching

in the cover graph of P . We label the edges in M as {Ci = {xi < yi} : 1 ≤ i ≤ m}.

Now yi covers xi in P for all i ∈ {1, 2, . . . ,m}.

Let X(M) denote the elements of P which are not covered by edges inM. Unlike

the case for matchings in the comparability graph, we no longer know that X(M) is

an antichain. Nevertheless, we know that for each x ∈ X(M), any edge in the cover

graph incident with x have its other end point in one of the covers in M. It follows

that for each x ∈ X(M) and each i ∈ {1, 2, . . . ,m}, there are five possibilities:

1. There are no edges in the cover graph with x as one endpoint and the other in

Ci.

2. x covers yi.

3. x covers xi.

4. yi covers x.

5. xi covers x.
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Accordingly, we may assign to each point x ∈ X(M) a vector of length m with

coordinate i being an integer from {1, 2, 3, 4, 5} reflecting which of these possibilities

holds for x and Ci.

Now suppose that x and y are distinct elements of X(M) and they are both

assigned to the same vector. Clearly, this implies that the subposet Y = {x, y} is an

autonomous subset in P . It follows that dim(P − {x}) = dim(P ). However, since

D(x) = D(y) and U(x) = U(y), the cover graph of the subposet P − {x} is obtained

from the cover graph of P just by deleting x and the edges incident with x. It follows

that P − {x} is a counterexample of smaller size.

The contradiction shows that distinct points of X(M) must be assigned to distinct

vectors, so |X(M)| ≤ 5m. So altogether, P has at most 5m+2m points, and since 5m+

2m ≥ 7, the conclusion of the theorem holds by appealing to Hiraguchi’s inequality

(Theorem 2.2.3).

2.7 Antichain Matchings

2.7.1 The Proof of the Chain Matching Theorem

We are now ready to present the proof of our main theorem for antichain matchings

by showing that if dim(P ) = d ≥ 4, then P has an antichain matching of size d.

Again, we proceed by contradiction and choose a counterexample P of minimum size.

As in the preceding section, we use our knowledge concerning the list of 3-irreducible

posets and note that P must therefore be d-irreducible for some d ≥ 4. Furthermore,

the maximum size m of an antichain matching in P is d− 1.

Claim 1. There do not exist distinct minimal elements a and a′ in P with U(a) ⊆

U(a′).

Proof. If such a pair could be found in P , set Q = P − {a, a′} and note that

dim(Q) = d − 1 ≥ 3 by Theorem 2.3.3. This implies that there is an antichain

matching M of size d− 1 in Q. It follows that {a, a′} ∪M is an antichain matching
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of size d in P . The contradiction completes the proof of Claim 1.

Claim 2. d ≥ 5.

Proof. Suppose to the contrary that dim(P ) = 4. Then width(P ) ≥ dim(P ) = 4.

We consider a maximum antichain A in P . Suppose first that A ⊆ Min(P ). Choose

four distinct elements of A and label them as a1, a2, a3 and a4. By Claim 1, we may

choose elements x1 and x2 from U(A) so that x1 > a1, x2 > a2, x1 ‖ a2 and x2 ‖ a1.

Since {a1, a2}, {x1, x2} and {a3, a4} is an antichain matching of size 3, we know

that C = P − (A ∪ {x1, x2}) is a chain. But then P − A can be covered by three

chains {x1}, {x2} and C, and one of them (actually two of them) consists of a single

point. It follows from Theorem 2.5.4 that dim(P ) ≤ 3.

Hence A 6⊆ Min(P ). Using duality, we may assume that U(A) 6= ∅ 6= D(A). Since

|A| ≥ 4, it follows that at least one of U(A) or D(A) is a chain. Without loss of

generality, we assume D(A) is a chain. Let u1 be the least element of D(A). Then

choose a1 ∈ A with u1 < a1. Since P is irreducible, u1 cannot be the only minimal

element of P . It follows that there exists an element a2 ∈ A with a2 ∈ Min(P ). Then

by Claim 1, there is an element x2 ∈ U(A) with x2 > a2 and x2 ‖ u1. Since {x2, u1},

{a1, a2} are antichains and |A| ≥ 4, it follows that U(A)− {x2} is a chain. So U(A)

is covered by two chains, and one of them has size 1. Now Theorem 2.5.4 implies

that dim(P − D(A)) ≤ 2. In turn, Theorem 2.5.3 implies that dim(P ) ≤ 3. The

contradiction completes the proof of Claim 2.

We now know that dim(P ) ≥ 5. Choose distinct minimal elements a1 and a2 in

P . By Claim 1, there are points x1 and x2 so that x1 > a1, x1 ‖ a2, x2 > a2 and

x2 ‖ a1. Then C1 = {a1 < x1} and C2 = {a2 < x2} are disjoint incomparable chains.

Set Q = P − (C1 ∪ C2). Then Lemma 2.3.5 implies that dim(Q) ≥ d − 2 ≥ 3, so Q

has an antichain matching M of size d − 2. It follows that M∪ {{a1, a2}, {x1, x2}}

is an antichain matching of size d in P . The contradiction completes the proof of our

antichain matching theorem.
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2.7.2 Antichain matching theorem of 3-dimensional posets

Similar to the chain matching theorem, our antichain matching theorem for the case

d = 3 can be proved directly, without appealing to the list of 3-irreducible posets.

Theorem 2.7.1. Let P be a poset. If dim(P ) = 3, then P has an antichain matching

of size 3.

Proof. We argue by contradiction. We assume the conclusion of the above theorem

is false and choose a counterexample P with |P | minimum. Then P is irreducible,

therefore indecomposable. By Lemma 2.2.2, width(P ) ≥ dim(P ) = 3. Let A be a

maximum antichain in P . Then we have |A| ≥ 3. Theorem 2.2.4 implies |P − A| ≥

dim(P ) = 3.

Case 1. |A| ≥ 5.

Let a1, a2, a3, a4, a5 ∈ A. Since {a1, a2}, {a3, a4} is an antichain matching of size

2, we know that x < a5 < y for any x ∈ D(A) and any y ∈ U(A). By symmetry, we

have x < ai < y for any x ∈ D(A), y ∈ U(A) and ai ∈ A. It follows that A is an

autonomous subposet of P , which contradicts the fact that P is indecomposable.

Case 2. |A| = 4.

Let A = {a1, a2, a3, a4}. Since {a1, a2}, {a3, a4} is an antichain matching of size

2, we know that P − A is a chain. If U(A) = ∅, then by Theorem 2.5.1, dim(P ) ≤

1 + width(P − A) = 2. Hence U(A) 6= ∅. Similarly, D(A) 6= ∅. Let y ∈ U(A) be a

maximal element of P . Since P is irreducible, y cannot be the only maximal element

of P . Without loss of generality, let a1 be another maximal element of P . It follows

that y ‖ a1. Similarly, let x ∈ D(A) be a minimal element of P , and x cannot be the

only minimal element of P . Note that if a1 is also a minimal element of P , then a1

must be a loose point, which is not possible. Hence we may assume, without loss of

generality, that a2 is another minimal element of P . It follows that x ‖ a2. However,

there is an antichain matching of size 3 in P , namely {a1, y}, {a2, x} and {a3, a4}.
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Case 3. |A| = 3.

Let A = {a1, a2, a3}. Suppose D(A) = ∅, then |P | ≥ 6 implies |U(A)| ≥ 3. Since

A is not an autonomous subposet of P , there exist w ∈ U(A) and ai ∈ A such that

w ‖ ai. Without loss of generality, we may assume w ‖ a1. Since {a1, w}, {a2, a3}

is an antichain matching of size 2, we know that P − (A ∪ {w}) is a chain. Note

that U(A) is covered by two chains, one of which is a single point chain {w}. By

Theorem 2.5.4, dim(P ) ≤ width(U(A)) = 2. This contradiction implies D(A) 6= ∅.

For the same reason, U(A) 6= ∅. Since |U(A)∪D(A)| = |P −A| ≥ 3, we may assume,

without loss of generality, that |U(A)| ≥ 2 and |D(A)| ≥ 1.

Claim 1. P − A is a chain.

Proof. As P is irreducible and indecomposable, there exists z ∈ D(A) and ai ∈

A such that z ‖ ai. Without loss of generality, we may assume z ‖ a1. Since

{a1, z}, {a2, a3} is an antichain matching of size 2, we know that P − (A ∪ {z}) is a

chain. In particular, U(A) is a chain. Dually, we can conclude that D(A) is also a

chain.

Let u be the maximal element of U(A), and y be the minimal element of U(A).

Since |U(A)| ≥ 2, we know that both u and y exists and u 6= y. Let x be the maximal

element of D(A). Since |D(A)| ≥ 1, such x does exist. It then follows that x ≥ z and

x ‖ a1. As u cannot be the only maximal element of P , there exists ai ∈ A such that

u ‖ ai. If y ‖ x, then {y, x}, {u, ai}, {ai+1, ai+2} is an antichain matching of size 3. So

we must have y > x. Therefore P − A is a chain.

As a1 is not a loose point, we have u > a1. Therefore, we may assume, without

loss of generality, that u ‖ a2. Since {a1, x}, {a2, u} is an antichain matching of size

2, we know that a3 < y. Note that if x < a3, then p − {a1, a2} is a chain. We can

attach a “zero” and a “one” to P so that the resulting poset is planar. This is not

possible as Theorem 2.6.3 implies dim(P ) ≤ 2. Hence we must have x ‖ a3.

Now x ‖ a1, a3 implies x < a2. Since {a3, x}, {a2, u} is an antichain matching
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Figure 11: The dimension of P is at most 2

of size 2, we know that a1 < y. Again, We can attach a “zero” and a “one” to P

(Figure 11) so that the resulting poset is planar. Then we have dim(P ) ≤ 2 followed

by Theorem 2.6.3. The contradiction completes the proof of the Theorem 2.7.1.

35



CHAPTER III

GRAPHS WITH LARGE GIRTH AND LARGE

CHROMATIC NUMBER

3.1 Introduction

The existence of graphs with large girth and large chromatic number is a classic

combinatorial problem. For small girth, Tutte [7] and Zykov [47] first proved that

there exist triangle free graphs with large chromatic number.

Let G be a graph with some large girth g. Then starting from any vertex of G,

locally G looks like a tree. As a tree is 2-colorable, intuitively one might think that G

can be colored with small number of colors. However, this is far from being true. In

1959, Erdős [18], in a landmark paper, proved the existence of graphs with arbitrarily

large girth and arbitrarily large chromatic number using probabilistic method.

Theorem 3.1.1. For all positive integers k and g, there exists a graph G with

girth(G) > g and χ(G) > k.

The classic and elegant proof uses Erdős-Rényi graph G ∼ G(n, p), a random

graph on n vertices and each edge is present in G with probability p independent

from every other edge. The probability p is carefully selected so that once n is

sufficiently large, with large probability (greater than 1/2), the number of cycles of

size at most g is small (say less than n/2), and the size of the largest independent

set in G is small. Then with positive probability there exists a graph G with less

than n/2 cycles of length at most g and with small independence number. Remove

from G a vertex from each cycle of length at most g, the resulting graph satisfies

Theorem 3.1.1.
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Although the existence of graphs with large girth and large chromatic number

was proved by Erdős in 1959 using probability method, the first construction of such

graphs was found by Lovász [33] in 1968. In 1979, Nešetřil and Rödl [35] gave a

simple construction of graphs with large girth and large chromatic number. Both of

their constructions are based on hypergraphs.

3.1.1 Cover Graphs

Recall that given a poset P , we can then associate with P a cover graph GP on the

same ground set as P , so that xy is an edge in GP if and only if x covers y in P or

y covers x in P . Note that cover graphs are triangle-free. Some thirty years ago, I.

Rival asked whether there are cover graphs with large chromatic number. Bollobás

noted in [12] that B. Descartes’ classic proof [6] of the existence of triangle-free graphs

with large chromatic number provided a positive answer. In fact, this construction

shows that for each r ≥ 1, there is a poset P of height r so that the chromatic number

of the cover graph of P is r. In view of the dual form of Dilworth’s theorem, this is

the minimum value of height for which such a poset can possibly exist.

In [12], Bollobás showed that there are lattices whose cover graphs have arbitrarily

large chromatic number. The example he constructed is complex and have a large

dimension. Nešetřil and Trotter then asked the following question.

Question 3.1.2. For every k ≥ 1, is there a r(k) such that for any poset P whose

cover graph has chromatic number at least r, we have dim(P ) ≥ k?

Kř́ıž and Nešetřil [32] answered Question 3.1.2 negatively for the case k ≥ 3. They

proved the following theorem.

Theorem 3.1.3. For every r ≥ 1, there exists a poset P with dim(P ) ≤ 2 so that

the chromatic number of the cover graph of P is r.
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3.1.2 A New Graph Parameter

On the way of proving Theorem 3.1.3, Kř́ıž and Nešetřil introduced a new parameter

for graphs, which we call the eye parameter. Formally, the eye parameter of a graph

G, denoted eye(G), is the least positive integer s for which there exists a family

{L1, L2, . . . , Ls} of linear orders on the vertex set of G for which if x, y and z are

three distinct vertices of G with {y, z} an edge of G, then there is some i with

1 ≤ i ≤ s for which x is not between y and z in Li. In this definition, it is allowed

that x be above both y and z or below both y and z. For example, when G is a path,

eye(G) = 1.

There is a notion of dimension of a graph G. The dimension of a graph G, denoted

dim(G), is the least positive integer t for which there is a family {L1, L2, . . . , Lt} of

linear orders on the vertex set of G so that the following two conditions are satisfied:

1. If x, y and z are distinct vertices of G and {y, z} is an edge in G, then there is

some i with 1 ≤ i ≤ t for which both x > y and x > z in Li.

2. If x and y are distinct vertices of G, then there is some i with 1 ≤ i ≤ t so that

x > y in Li.

Clearly we have eye(G) ≤ dim(G). On the other hand, if a family of linear orders

{L1, L2, . . . , Ls} witnesses eye(G) = s, then {L1, L2, . . . , Ls, L
′
1, L

′
2, . . . , L

′
s} is a family

of linear orders that implies dim(G) ≤ 2s.

Proposition 3.1.4. Let G be a graph. Then eye(G) ≤ dim(G) ≤ 2 eye(G).

If G is the cover graph of poset P with dim(P ) ≤ 2, then eye(G) ≤ 2, as the family

of linear extensions which witnesses dim(P ) ≤ 2 also witnesses eye(G) ≤ 2. So as

Kř́ıž and Nešetřil noted, we have the following immediate corollary of Theorem 3.1.3.

Corollary 3.1.5. For every r ≥ 1, there is a graph G with eye(G) ≤ 2 and χ(G) = r.
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The graphs constructed by Kř́ıž and Nešetřil in the proof of Theorem 3.1.3 and

Corollary 3.1.5 have girth four. However, they were able to prove the following

extension.

Theorem 3.1.6. For every pair (g, r) of positive integers, there is a graph G with

girth(G) ≥ g, χ(G) = r and eye(G) ≤ 3.

In the same paper, Kř́ıž and Nešetřil asked whether the last condition can be

strengthened to eye(G) ≤ 2.

Question 3.1.7. For every pair (g, r) of positive integers, does there exist a graph G

with girth(G) ≥ g, χ(G) = r and eye(G) ≤ 2?

Question 3.1.7 is related to the famous Erdős-Hajnal conjecture [18]: There exists

a smallest integer f(r, g) for which every graph of chromatic number at least f(r, g)

contains a subgraph of girth at least g and chromatic number at least r.

Suppose the Erdős-Hajnal conjecture is true and such integer f(r, g) does exist.

Corollary 3.1.5 implies that for every pair (g, r) of positive integers, there is a graph

G with eye(G) ≤ 2 and χ(G) = f(r, g). Note that if H is a subgraph of G, then

eye(H) ≤ 2. So by the Erdős-Hajnal conjecture, there is a subgraph H of G such

that eye(H) ≤ 2, χ(H) ≥ r and girth(H) ≥ g. So the answer to Question 3.1.7

must be “Yes”. On the other hand, if the answer to Question 3.1.7 is “No”, then the

Erdős-Hajnal conjecture fails.

3.2 Main Theorem

We answer Question 3.1.7 of Kř́ıž and Nešetřil in the affirmative, which of course

leaves the Erdős-Hajnal conjecture intact. The theorem we have is actually slightly

stronger.

Theorem 3.2.1. For every pair (g, r) of positive integers, there is a poset P = P (g, r)

with cover graph G = G(g, r) so that the height of P is r, while girth(G) ≥ g and
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Figure 12: P = P (g, 3) has eye parameter at most 2

χ(G) = r. Furthermore, there are two linear extensions L1 and L2 of P witnessing

that eye(G) ≤ 2.

Note that we do not claim that the poset P (g, r) in Theorem 3.2.1 is 2-dimensional.

In fact, the dimension of P (g, r) grows rapidly with r, even with g fixed. We will

return to this issue in the last section of this chapter.

3.2.1 Proof of the Main Theorem

We fix an integer g ≥ 4 and then argue by induction on r. The basic idea behind the

proof will be to make a minor adjustment to the construction used by Nešetřil and

Rödl in [35].

The cases r = 1 and r = 2 are trivial. For r = 1, we let P be a single point.

For r = 2, we let P be a two-point chain. To handle the case r = 3, we let n be an

odd integer with n ≥ g. Then we take G = G(g, 3) as an odd cycle with vertex set

{a1, a2, . . . , an}, with {ai, ai+1} an edge for each i = 1, 2, . . . , n− 1. Also, {an, a1} is

an edge of G. Then we take P = P (g, 3) as a poset whose cover graph is G by setting

the following covering relations in P (Figure 12):

a1 < a2 < a3 > a4 < a5 > a6 < a7 > a8 < a9 > · · · > an−1 < an > a1.

We then take

L1 = a1 < a2 < a4 < a3 < a6 < a5 < a8 < a7 < · · · < an−1 < an−2 < an
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and

L2 = an−1 < a1 < an < an−3 < an−2 < · · · < a6 < a7 < a4 < a5 < a2 < a3.

It is easy to see that L1 and L2 are linear extensions of P . Furthermore, the two

endpoints of an edge in G occur consecutively in either L1 or L2, except for the edge

{an−1, an}. However, only an−2 is between an−1 and an in L1. Also, only a1 is between

an−1 and an in L2. It follows that L1 and L2 witness that eye(G) ≤ 2. Note that

dim(P ) 6= 2. In fact, dim(P ) ≥ 3.

Now suppose that for some r ≥ 3, we have constructed a poset P = P (g, r)

with cover graph G = G(g, r) so that the height of P is r, while girth(G) ≥ g and

χ(G) = r. Suppose further that L1 and L2 are linear extensions of P witnessing that

eye(G) ≤ 2.

We now explain how to construct a poset Q = Q(g, r + 1) with cover graph

H = H(g, r+1) so that the height of Q is r+1, while girth(H) ≥ g and χ(H) = r+1.

We will also construct linear extensions M1 and M2 of Q witnessing that eye(H) ≤ 2.

Let A denote the vertex set of G and let n = |A|. Using the results of Nešetřil

and Rödl as developed in [35], we know there exists a hypergraph H satisfying the

following conditions: H is a simple n-uniform hypergraph; the girth of H is at least

g; and the chromatic number of H is r + 1. Let B and E denote, respectively, the

vertex set and the edge set of H. In the discussion to follow, we consider each edge

E ∈ E as an n-element subset of B.

The poset Q is assembled as follows. Set Z = E × A. The ground set of Q will

be B ∪ Z with all elements of B maximal in Q. For each edge E in E , the elements

of {E} × A determine a subposet of Q which we will denote P (E). When a and a′

are distinct elements of A, we will set (E, a) < (E, a′) in Q if and only if a < a′ in

P . Accordingly, for each E ∈ E , the subposet P (E) is isomorphic to P . Also, when

E,E ′ ∈ E and E 6= E ′, we make all elements of P (E) incomparable with all elements

of P (E ′).
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We pause to point out that regardless of how the comparabilities between B and

Z are defined in Q, for each edge E ∈ E , the covering edges of P (E) are covering

edges in Q and these edges form a copy of G.

We now describe these comparabilities between B and Z. This will be done by

prescribing when an element b ∈ B covers an element (E, a) ∈ Z. We begin by

choosing an arbitrary linear order L(B) on B. Also, let {a1, a2, . . . , an} be a labelling

of A so that L1 is the subscript order, i.e., ai < aj in L1 if and only if i < j. Next, we

fix an edge E ∈ E and describe the cover relations between B and P (E). This process

will be repeated for each edge E ∈ E and when this step has been completed, the

poset Q is fully determined. First, when b ∈ B − E, we make b incomparable to all

elements of P (E) in Q. Second, let {b1, b2, . . . , bn} be the labelling of the elements of

E so that bi < bj in L(B) if and only if i < j. Then for each i = 1, 2, . . . , n, we make

bi cover (E, ai) in Q. It follows that if (E, a) ∈ Z, then there is a unique element

b ∈ B so that b covers (E, a) in Q.

Now that Q = Q(g, r+ 1) has been defined, we take H = H(g, r+ 1) as the cover

graph of Q, and we need to show that the height of Q is r + 1, while girth(H) ≥ g

and χ(H) = r + 1. Furthermore, there are two linear extensions M1 and M2 of Q

witnessing that eye(H) ≤ 2.

Claim 1. χ(H) = r + 1.

Proof. We note that χ(H) ≥ r, since H contains copies of G. On the other hand, it

is trivial that we may color all elements of Z with r colors and use one new color on

the independent set B, so that χ(H) ≤ r + 1. Now suppose that χ(H) = r, and let

φ be a proper coloring of H using r colors. Then since the chromatic number of H is

r+1, there is some edge E of H on which φ is constant. This implies that φ colors the

cover graph of P (E) with only r − 1 colors, which is impossible. The contradiction

shows that χ(H) = r + 1, as desired.

Claim 2. height(Q) = r + 1.
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Proof. First, we note that the height of Q is at most r + 1, since we have added B

as a set of maximal elements to a family of pairwise disjoint and incomparable copies

of P . On the other hand, we have shown that χ(H) = r+ 1. So the height of H must

be r + 1, using the dual form of Dilworth’s theorem.

Claim 3. girth(H) ≥ g.

Proof. Consider a cycle C in H. If there is an edge E of H so that C is contained

entirely within the cover graph of P (E), then it has size at least g. So we may

assume that C involves vertices from copies of P associated with two or more edges

in E . Now the fact that the covering edges between B and each P (E) are formed

using a bijection means that once the cycle enters some P (E), it must pass through

at least two vertices before leaving. So the girth requirement is satisfied (generously)

be the fact that the girth of H is at least g. In this detail, we point out that we are

using essentially the same idea as in [35].

Claim 4. There are two linear extensions M1 and M2 of Q witnessing that eye(H) ≤

2.

Proof. In fact, there is considerable flexibility in how this is done. For each b ∈ B,

let N(b) denote the set of all elements (E, a) from Z such that b covers (E, a) in Q,

i.e., N(b) is just the neighborhood of b in the cover graph H. Note that N(b) is an

antichain in the poset Q.

Let L(E) be an arbitrary linear order on E . We define linear extensions M1 and

M2 by the following rules (starting with the rules for M2):

1. The restriction of M2 to B is an arbitrary linear order. In M2 all elements of

Z are below all elements of B. Furthermore, if (E, a) and (E ′, a′) are distinct

elements of Z, then (E, a) < (E ′, a′) in M2 if and only if either E < E ′ in L(E)

or E = E ′ and a < a′ in L2.
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2. The restriction of M1 to B is the linear order L(B). In M1, for each b ∈ B, all

elements of N(b) will be placed in the gap immediately under b and above all

other elements (if any) of B which are under b in L(B). The restriction of M1

to N(b) will be the dual of the restriction of M2 to N(b).

We need to show that M1 and M2 are linear extensions of Q, and we remark that

it is enough to show that they both respect the covering relations in Q. First, we

note that for each i = 1, 2, and for each E ∈ E , if a and a′ are distinct elements of A,

then (E, a) < (E, a′) in Mi if and only if a < a′ in Li. On the other hand, if b ∈ B,

(E, a) ∈ Z and b covers (E, a) in Q, then (E, a) ∈ N(b) so it is placed below b in

M1. Finally, we note that all elements of Z are below all elements of B in M2. We

conclude that M1 and M2 are linear extensions of Q, as desired.

Finally, we explain why M1 and M2 witness that eye(H) ≤ 2. Consider how an

edge might possibly trap a vertex in both M1 and M2. If the edge is an edge in the

cover graph of some P (E), then the linear extension M2 forces the vertex to also

belong to P (E). But the restriction of M1 and M2 to P (E) are just like L1 and L2

for G, so this situation cannot lead to a problem.

Similarly, if the edge joins some b ∈ B to a vertex (E, a) in N(b), then the

only potential problem is a vertex (E ′, a′) ∈ N(b) with (E, a) < (E ′, a′) < b in M1.

However, the rules for M1 and M2 imply that (E ′, a′) < (E, a) < b in M2. This

completes the proof of Claim 4 and Theorem 3.2.1.

3.3 Upper and Lower Cover Dimension

The following lemma is straightforward.

Lemma 3.3.1. Let P be a poset and let G be the cover graph of P . If dim(P ) = t,

then dim(G) ≤ 2t.

Proof. Let t = dim(P ) and let R = {Li : 1 ≤ i ≤ t} be a realizer of P . Then for each
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i = 1, 2, . . . , t, let L∗i be the dual of Li, i.e., x > y in L∗i if and only if x < y in Li. We

claim that the family R∗ = R∪ {L∗i : 1 ≤ i ≤ t} witnesses that dim(G) ≤ 2t.

To see this, note that the second condition of dimension of a graph holds since L1

and L∗1 are in the family. Now let x, y and z be distinct vertices with {y, z} an edge

in G. Without loss of generality, we take y < z in P . If x 6< z in P , then there is

some i with 1 ≤ i ≤ t so that x > z in Li. This implies x > z > y in Li. So we may

assume that x < z in P . Since {y, z} is an edge of the cover graph, we cannot have

y < x in P . It follows that there is some j with 1 ≤ j ≤ t so that x < y in Lj. This

implies that x < y < z in Lj and x > y > z in L∗j . This completes the proof of the

lemma.

We believe the bound in the above basic lemma is tight.

Conjecture 3.3.2. For every t ≥ 1, there exists a poset P of dimension t so that if

G is the cover graph of P , then dim(G) = 2 dim(P ).

It can be shown that Conjecture 3.3.2 holds when t ≤ 2. For the case t = 1, let

P be a chain of height 2 and let G be the cover graph of P . Then dim(P ) = 1 and

dim(G) = 2.

For the case t = 2, by Theorem 3.1.3, there exists a poset P with cover graph

G so that dim(P ) = 2 and χ(G) = 5. As G is not 4-colorable, four color theorem

implies that G is not a planar graph. Then the following Schnyder’s theorem [37]

implies dim(G) ≥ 4. Therefore by Lemma 3.3.1, dim(G) = 4.

Theorem 3.3.3. Let G be a graph. Then G is planar if and only if dim(G) ≤ 3.

Conjecture 3.3.2 is still open for larger values of t. However, our preliminary

thoughts on this conjecture suggest a more extensive line of research.

For a poset P , we call a family R = {L1, L2, . . . , Lt} of linear extensions of P

an upper-cover realizer of P provided that whenever (z, x, y) is an ordered triple of
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distinct points in P with z covering both x and y, there is some i with x > y in

Li. (Note that x and y are incomparable in P , as z covers both x and y in P .) The

upper cover dimension of P , denoted dimuc(P ), would then be the minimum size of

an upper-cover realizer of P .

Lower-cover realizer and the lower cover dimension of P , denoted dimlc(P ), would

then be defined dually. Clearly, dimuc(P ) ≤ dim(P ) and dimlc(P ) ≤ dim(P ).

An attractive feature of these new parameters is that they are monotonic on

subdiagrams of the order diagram of P , i.e., if we consider the diagram D of P as

an acyclic orientation of the cover graph G, and D′ is a subdiagram of D, then D′

determines a poset P ′ which is a suborder of P . On the one hand, P ′ is not necessarily

a subposet of P and it is clear that dim(P ′) may be the same as dim(P ) or arbitrarily

smaller or larger. On the other hand, if edges are removed from the diagram, then

upper and lower cover dimension cannot increase, i.e., dimuc(P
′) ≤ dimuc(P ) and

dimlc(P
′) ≤ dimlc(P ).

Although the difference between upper (lower) dimension and dimension of a poset

can be arbitrarily large, for example, the standard example Sn(n ≥ 3) has dimension

n and both of its upper and lower dimensions are 2. There are infinitely many posets

for which the upper dimension, the lower dimension and the dimension are the same.

Lemma 3.3.4. Let P be a poset on n points and dim(P ) = d ≥ 3. Then there exists

a poset Q on at most n2 points so that Q contains P as a subposet, and

dimuc(Q) = dimlc(Q) = dim(Q) = dim(P ).

Proof. The proof idea is straightforward. Starting from original poset P , each time

we add one more point to current poset, until the upper and lower dimension of the

new poset match the dimension of P . At the same time, the dimension of the new

poset, which initially equals to the dimension of P , will stay unchanged.

Let X be the ground set of P . Let F = {L1, L2, . . . , Ld} be a realizer of P .

46



Suppose dimuc(P ) < dim(P ). Then there exists an pair (x, y) ∈ Inc(P ) so that the

upper covers of x and y are disjoint in P . We add bxy to P , and let P ′ = P ∪ {bxy}.

Instead of specifying where to add bxy to P , we will build a realizer of P ′ based

on F . Then P ′ can be recovered from its realizer. As x and y are incomparable in

P , there exists two linear extension Li and Lj in F such that x < y in Li and y < x

in Lj. Let F ′ = {L′1, L′2, . . . , L′d} be a realizer of P ′. In L′i, bxy is inserted right above

y, and the restriction of L′i to X is Li. Similarly, In L′j, bxy is inserted right above

x, and the restriction of L′j to X is Lj. In linear extension L′k where k 6= i, j, bxy is

inserted at the top, and the restriction of L′k to X is Lk.

We pause to mention that as the restriction of F ′ to X is F , P is a subposet of

P ′. Hence d = dim(P ) ≤ dim(P ′). On the other hand, P ′ has a realizer of size d as

witnessed by F ′, so we conclude dim(P ′) = dim(P ) = d.

We note that as d ≥ 3, there exist k 6= i, j such that bxy is at the top of L′k, so bxy

is a maximal element in P ′. Therefore, every cover relation in P is preserved in P ′.

Hence we have dimuc(P
′) ≥ dimuc(P ) and dimlc(P

′) ≥ dimlc(P ). Moreover, in P ′, bxy

covers both x and y (and possibly some other points). Suppose not, then there exists

z ∈ P so that, without loss of generality, bxy > z > x in P ′. However, this cannot be

true as by our construction of F ′, we have z > bxy > x in L′j.

Now we repeat the above process of adding one point at a time as long as there

exists u, v ∈ P such that u and v are incomparable in P , and their upper covers are

disjoint in the current poset. Note that in each iteration, 1) the new poset contains

the old one as a subposet; 2) the dimension of the new poset will stay unchanged, 3)

the upper and lower dimension of the new poset will not decrease; 4) the new poset

preserves all the cover relations in the old poset.

Let P ∗ be the resulting poset. Note that P is a subposet of P ∗. Also, we have

dim(P ∗) = dim(P ) = d. Furthermore, for every incomparable pair (u, v) ∈ Inc(P ),

there exists z ∈ P ∗ so that z covers both x and y in P ∗. Therefore, dimuc(P
∗) =

47



dim(P ) = d. Since there are at most n(n− 1)/2 ordered incomparable pairs in P , we

conclude that |P ∗| ≤ n+ n(n− 1)/2.

The lower cover dimension will be exactly the dual. Each time, instead of adding a

maximal element bxy, we add a minimal element axy. After adding at most n(n−1)/2

points to P ∗, the final poset Q will have at most n + n(n − 1)/2 + n(n − 1)/2 = n2

points. It also satisfies dimuc(Q) = dimlc(Q) = dim(Q) = dim(P ) = d.

We make the following conjecture, which is stronger than Conjecture 3.3.2.

Conjecture 3.3.5. For every pair (d, r) of positive integers, there is a poset P with

dim(P ) = d so that if D is the order diagram of P , E is the edge set of D and φ : E →

{1, 2, . . . , r} is an r coloring of the edges of D, then there is some α ∈ {1, 2, . . . , r}

so that if we take D′ as the subdiagram of D with edge set {e ∈ E : φ(e) = α} and

set P ′ as the suborder of P determined by D′, then dimuc(P
′) = dimlc(P

′) = dim(P ).

Lemma 3.3.6. Conjecture 3.3.5 implies Conjecture 3.3.2. i.e., if Conjecture 3.3.5 is

true, so is Conjecture 3.3.2.

Proof. Suppose Conjecture 3.3.5 is true. For any t ≥ 1, let r = 22t−1 and let P be

the poset satisfies Conjecture 3.3.5. Let G be the cover graph of P . We will show

that dim(G) = 2 dim(P ) = 2t. Suppose not, by Lemma 3.3.1, we have dim(G) ≤

2 dim(P )− 1 = 2t− 1. Let F = {L1, L2, . . . , L2t−1} be a family of linear orders which

witnesses dim(G) ≤ 2t− 1.

Since D is the order diagram of P , each edge of D is a cover edge of P . For each

edge e = {x < y} of D, color e by r = 22t−1 colors by assigning to e a bit string of

length 2t− 1. Coordinate i of this bit string is 0 if x < y in Li , and 1 if x > y in Li.

By Conjecture 3.3.5, there is some bit string α so that if P ′ is the poset determined

by the edges with color α, then dimuc(P
′) = dimlc(P

′) = dim(P ) = t.

Let X denote the ground set of P ′. Let F ′ = {L′1, L′2, . . . , L′2t−1} be a family of

linear orders where L′i is the restriction of Li on X. Note that as every cover edge
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of P ′ has color α, when coordinate i of the string α is 0, the linear order L′i is a

linear extension of P ′. Similarly, when coordinate i of the string α is 1, the dual of

the linear order L′i is a linear extension of P ′. Let F0 = {L′i ∈ F ′ : α(i) = 0} and

F1 = {L′i ∈ F ′ : α(i) = 1}. We have F0 ∩ F1 = ∅ and F0 ∪ F1 = F ′.

We claim F0 is a lower cover realizer of P ′. For any lower cover configuration

{z, x, y} in P ′ where z is covered by both x and y, as F witnesses dim(G) ≤ 2t− 1,

there exist Li and Lj in F such that x > y, z in Li and y > x, z in Lj. Therefore we

have x > y, z in L′i and y > x, z in L′j. However, every linear order in F ′ is either a

linear extension of P ′, or the dual of a linear extension of P ′. Hence we must have

x > y > z in L′i and y > x > z in L′j. Note that both L′i and L′j are linear extensions

of P ′, therefore L′i, L
′
j ∈ F0. We conclude that F0 is a lower cover realizer of P ′.

Dually, F1 is a upper cover realizer of P ′.

Since dimuc(P
′) = dimlc(P

′) = dim(P ) = t, we have 2t− 1 = |F ′| = |F0|+ |F1| ≥

t+ t = 2t. This contradiction completes the proof of Lemma 3.3.6.
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CHAPTER IV

DIMENSION OF RANDOM ORDERED SETS

4.1 Introduction

In 1991, Erdős, Kierstead and Trotter [19] investigated the dimension of random

bipartite posets in the probability space Ω(n, p) defined as follows. Posets in Ω(n, p)

have the form P = A∪A′ and are called bipartite posets. Elements of A are minimal

in P while elements of A′ are maximal. Furthermore, for each pair (a, a′) ∈ A × A′,

let (a < a′) be the event that a < a′ in P . Set Pr(a < a′) = p (in general p is a

function of n) with events corresponding to distinct pairs of A× A′ independent.

Throughout this chapter, we use the acronym EKT to refer to the paper [19] by

Erdős, Kierstead and Trotter. Also, our notation and terminology will be essentially

the same as in EKT—with just a few minor variations.

We use the following standard terminology: When we say that a statement (an

inequality, for example) involving an integer n holds almost surely, we mean that for

every ε > 0, there is an integer n0 so that if n > n0, the probability that the statement

fails to hold is less than ε. Also, we will at times include the symbol ε as part of the

statement. For example, (1− 1/n)n < 1/e for all n ≥ 1 while (1− 1/n)n > (1− ε)/e,

almost surely.

With this discussion in mind, here are the statements of the principal results in

EKT, starting with a comprehensive lower bound.

Theorem 4.1.1. For every ε > 0, there is a constant δ > 0 so that if

log1+ε n

n
< p < 1− n−1+ε,
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then almost surely,

dim(P ) >
δpn log pn

1 + δp log pn
.

The proof of Theorem 4.1.1 is obtained via a single, and quite complex, argument.

However, it may be more natural to split the statement of its consequences into two

separate ranges.

Corollary 4.1.2. For every ε > 0, there is a constant δ > 0 so that if

log1+ε n

n
< p ≤ 1

log n
,

then almost surely,

dim(P ) > δpn log pn.

Corollary 4.1.3. For every ε > 0, there is a constant C > 0 so that if

1

log n
≤ p < 1− n−1+ε,

then almost surely,

dim(P ) > n− Cn

p log n
.

We pause to comment on the historical significance of the lower bound in Corol-

lary 4.1.2. For a poset P (any poset, not just a height 2 poset), let

∆(P ) = max
x∈P
|{y ∈ P : y < x in P or y > x in P}|.

Just as is the case in graph theory, the quantity ∆(P ) is called the maximum degree

of P . Then we have the following upper bounds for dimension in terms of maximum

degree proven by Füredi and Kahn [21].

Theorem 4.1.4. There exists a positive constant C1 so that if P is a poset on n

points and k = ∆(P ), then

dim(P ) < C1k log n.
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Theorem 4.1.5. There exists a positive constant C2 so that if P is a poset on n

points and k = ∆(P ), then

dim(P ) < C2k log2 k.

Theorem 4.1.4 is proved using relatively straightforward probabilistic techniques,

while the proof of Theorem 4.1.5 requires the Lovász Local Lemma [20]. As noted in

EKT, when n−1+ε < p ≤ 1/ log n, log(pn) = Θ(log n), so a poset P in Ω(n, p) satisfies,

almost surely, the twin inequalities: ∆(P ) ≤ 2pn and dim(P ) > δpn log n. This shows

that the inequality in Theorem 4.1.4 is best possible—up to a multiplicative constant.

In their seminal 1941 paper where the concept of dimension is introduced, Dushnik

and Miller [16] gave the following construction: For each n ≥ 2, Sd = A ∪ A′ is the

bipartite poset with A = {a1, a2, . . . , ad}, A′ = {a′1, a′2, . . . , a′d} and ai < a′j in Sd if

and only if i 6= j. Dushnik and Miller noted that dim(Sd) = d, and Sd is now referred

to as the standard example of a poset of dimension d. We will discuss standard

examples more extensively in Sections 4.5 and 4.6.

For an integer k ≥ 1, let mk be the maximum dimension of a poset P with

∆(P ) = k. Trivially, m1 = 2, and it is an easy exercise to show that m2 = 3.

However, the exact value of m3 is not known. In general, the standard examples

show mk ≥ k + 1, but until the early 1980’s, it was not even known whether the

parameter mk is well defined. However, Rödl and Trotter found a simple proof that

mk exists and satisfies mk ≤ 2k2+2. The second of the two Füredi-Kahn inequalities,

which was published in 1984, asserts a much stronger result: mk = O(k log2 k).

However, the lower bound in Corollary 4.1.2 also shows that mk = Ω(k log k).

Determining the true behavior of the ratio mk/k remains one of the most challenging

(and probably quite difficult) problems in dimension theory. Also, in over 20 years,

no one has yet provided an explicit construction for a poset P with ∆(P ) = k and

dim(P ) ≥ k + 2, when k ≥ 3.

As for upper bounds, in view of the twin Füredi-Kahn bounds, EKT is concerned
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only with the range 1/ log n ≤ p < 1 where they provide the following result.

Theorem 4.1.6. For every ε > 0, if 1/ log n ≤ p < 1, then almost surely

dim(P ) < n− n log(1/p)

(2 + ε) log n
.

Combining the two bounds, when p is a constant, it follows that there are positive

constants c1 and c2 (depending on p) so that almost surely, dim(P ) is in the range:

n− c1
n

log n
< dim(P ) < n− c2

n

log n
.

While essentially all of the analysis in EKT is done for bipartite posets, they do

discuss the model where all labelled posets with ground set {1, 2, . . . , n} are considered

as equally likely outcomes. For this model, EKT then provides positive constants c′1

and c′2 so that, almost surely,

n

4
− c′1

n

log n
< dim(P ) <

n

4
− c′2

n

log n
.

4.1.1 Statements of New Results

As is clear from the preceding discussion, The research in EKT was motivated primar-

ily by two goals. One was to analyze the accuracy of the Füredi-Kahn upper bounds

on dimension in terms of maximum degree. The second was to develop the machinery

for estimating the expected dimension of a random labelled poset on n points. For

these reasons, most of the effort in EKT was focused on the case 0 < p ≤ 1/2. While

bounds are given in EKT for the range 1/2 ≤ p < 1, where the expected value of

dimension is (1 − o(1))n, the accuracy of their results deteriorates as p gets close to

1.

Our primary focus here will be on the range 1/2 ≤ p < 1, where it is often the

case that statements are more elegant and the analysis is somewhat cleaner when we

work with the complementary parameter q = 1 − p. So throughout this section, we
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use the symbol q = 1− p without further comment. The reader may note that some

of our results extend to the case p < 1/2, but here the result reduces to (essentially)

the same result already proved in EKT. So unless there is good reason not to do so,

we have elected to add p ≥ 1/2 (equivalently, q ≤ 1/2) to the hypothesis of almost

all of our results.

Although the result is essentially a restatement of the the upper bound in Theo-

rem 4.1.6, we will provide an elementary proof of the following result.

Theorem 4.1.7. For every ε > 0, if

log1+ε n

n
< q ≤ 1/2,

then almost surely,

dim(P ) ≤ n− qn

(2 + ε) log n
.

Furthermore, our proof of Theorem 4.1.7 provides the framework for the following

more general upper bound, stated in terms of the Euler function:

φ(q) =
∞∏
i=1

(1− qi).

Theorem 4.1.8. For every ε > 0, if

log1+ε n

n
< q ≤ 1/2,

then almost surely,

dim(P ) < n− (log(1/φ(q))n

(2 + ε) log n
.

Note that when log1+ε n/n < q ≤ 1/2, log(1/φ(q)) > log(1/p). So indeed The-

orem 4.1.8 is a strengthening of Theorem 4.1.6. The gap between log(1/φ(q)) and

log(1/p) is at 0.5489 when q = 1/2, and it tends to zero as q goes to zero.

We believe that the inequality in the preceding theorem is the “right answer”, at

least when q is not too small, and we make the following conjecture.
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Conjecture 4.1.9. For every ε > 0, if

n−1/3 ≤ q ≤ 1/2,

then almost surely,

dim(P ) > n− (log(1/φ(q))n

(2− ε) log n
.

On the other hand, we also prove the following two lower bounds which are con-

siderable strengthening of the results in EKT.

Theorem 4.1.10. For every ε > 0, if C > 4/ε, and n−1/4+ε ≤ q ≤ 1/2, then almost

surely,

dim(P ) > n− Cqn

log n
.

Theorem 4.1.11. For every ε > 0, if log1+ε n/n < q ≤ n−1/4, then almost surely,

dim(P ) > n− n2/3 log(ε−2)/3 n

q1/3
.

Note that the lower bound in Theorem 4.1.10 is increasing as q tends to zero. Of

course, this behavior is matched by the upper bound in Theorem 4.1.8. However, the

lower bound in Theorem 4.1.11 is decreasing as q tends to zero.

Using techniques which are not represented in EKT, we will prove two additional

bounds. The first of these results shows that the rebounding behavior of Idim(P )

predicted by our lower bounds is correct, i.e., we can conclude that as q tends to

zero, the expected value of dimension first increases and then decreases, a subtlety

not identified in EKT.

Theorem 4.1.12. For every ε > 0, if

log1+ε n

n
< q ≤ n−1/2,

then almost surely,

dim(P ) ≤ n− log n

q
.
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The second result is an improvement in the lower bound when q is very small. It

shows that the preceding bound is essentially best possible.

Theorem 4.1.13. For every ε > 0, if

log1+ε n

n
< q ≤ n−4/5,

then almost surely,

dim(P ) > n− 4 log n

q
.

As a consequence, the interval on q where we do not have tight control has been

narrowed to n−4/5 < q ≤ n−1/4. Outside this range, we have upper and lower bounds

on the expected value of n−dim(P ) which differ by at most a multiplicative constant.

The remainder of this chapter is organized as follows. In the next section, we

provide a concise summary of essential notation, terminology and background mate-

rial. In Section 4.3, we provide a simple proof of Theorem 4.1.7 as well as the more

complex argument for the new upper bound in Theorem 4.1.8. This section will also

illustrate the connections with q-series, Euler functions and latin rectangles. In Sec-

tion 4.4, we provide the proofs of our lower bounds in Theorems 4.1.10 and 4.1.11.

These proofs will follow along lines which are close to the approach of EKT—with

some minor changes and some simplification in the analysis.

In Section 4.5, we turn to a motivating extremal problem, and using new methods

not present in EKT, we will prove the upper bound in Theorem 4.1.12 and the lower

bound in Theorem 4.1.13. In particular, this upper bound shows that dimension does

indeed “rebound” and shrink as q approaches 0. We also have a nice application of

the asymmetric form of the Lovász Local Lemma when we apply our results to the

extremal problem.

In Section 4.6, we consider a second extremal problem, where will actually be

considering very small values of p. With the machinery built up, we can quickly make
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a major advance on this problem. We close in Section 4.7 with a brief discussion of

some remaining open problems.

4.2 Essential Background Material

We follow the standard practice in combinatorial mathematics of saying, for example,

that M is a set of size n/ log n, a statement that requires n/ log n be an integer. The

minor complexities associated with rounding up or rounding down as the situation

requires can easily be handled—but in the interim, they only serve to obscure the

line of reasoning.

In a bipartite poset P = A ∪ A′, when M ⊆ A and M ′ ⊆ A′, we let Inc(M,M ′)

denote the set of all pairs (a, a′) ∈M ×M ′ with a ‖ a′ in P . When L is a linear order

on A, then for every a ∈ A, we let:

hL(a) = |{b ∈ A : b > a in L}|

denote the height of a in L, i.e., hL(a) is just the number of elements of A which

are higher than a in L. Note that the top element of A in L is at height 0. When

F = {L1, L2, . . . , Lt} is a family of linear orders on A and a ∈ A, we abbreviate

hLj
(a) as hj(a).

When working with a linear order L′ on A′, the notation of height will be applied

upside-down, i.e., h′L′(a
′) counts the number of elements of A′ which are below a′ in

L′. So an element a′ with h′L′(a
′) = 0 is the lowest element of A′ in L′.

4.2.1 Interval Dimension

For technical reasons which will soon be clear, our proofs will use two variants of di-

mension for a bipartite poset P—the conventional dimension dim(P ) and the interval

dimension Idim(P ).

Here is the framework for the interval dimension. When S ⊆ A×A′, we say that

a family F = {L1, L2, . . . , Lt} of linear extensions of P reverses S when the following
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property holds:

Reversal Property. For every pair (a, a′) ∈ S with a ‖ a′ in P , there is some j with

1 ≤ j ≤ t, so that a > a′ in Lj.

We then define the interval dimension Idim(P ) as the least positive integer d for

which there is a family F = {L1, L2, . . . , Ld} of linear extensions of P which reverses

A × A′. Here the interval dimension was introduced by Trotter and Bogart in [11].

However, it is defined for all posets while our definition for Idim(P ) only makes sense

for bipartite posets.

Proposition 4.2.1. For every bipartite poset P = A ∪ A′, Idim(P ) ≤ dim(P ) ≤

Idim(P ) + 1.

Proof. Clearly we have Idim(P ) ≤ dim(P ) by definition. Let F = {L1, L2, . . . , Ld}

be a family of linear extensions of P which reverses A×A′, where d = Idim(P ). Let

Ld+1 = [L∗1(A) < L∗1(A
′)], and F ′ = F ∪ Ld+1. We show that F ′ is a realizer of P .

For any (x, y) ∈ Inc(P ). (a) If x ∈ A′ and y ∈ A, then x > y in Ld+1; (b) If x ∈ A

and y ∈ A′, then x > y in some Lj in F as F reverses A × A′; (c) If x, y ∈ A or

x, y ∈ A′, then x > y in either L1 or Ld+1. Therefore F ′ is a realizer of P .

Note that for the range of p considered here, almost surely we have Idim(P ) =

dim(P ).

4.2.2 Matchings

A matching of size t in a bipartite poset P = A ∪ A′ is a pair M = (T, T ′) where

T = {a1, a2, . . . , at} and T ′ = {a′1, a′2, . . . , a′t} are t-element subsets of A and A′

respectively with aj ‖ a′j for each j = 1, 2, . . . , t. A matching is maximal if it is not

properly contained in any other matchings. A matching is maximum if it has the

largest size among all matchings. There is an obvious notion of a complete matching,

i.e., a matching with T = A and T ′ = A′.
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The following basic result is due to Hiraguchi [25].

Proposition 4.2.2. Let P be a poset and let (x, y) ∈ Inc(P ). Then there exists a

linear extension L of P such that:

1. If z ∈ P − {x} and x ‖ z in P , then x > z in P .

2. If w ∈ P − {y} and y ‖ w in P , then w > y in P .

Proof. Note that since (x, y) ∈ Inc(P ), we have D(y) ∩ U(x) = ∅. Let L = [D(y) <

y < P − D[y] − U [x] < x < U(x)]. It is then easy to check that L satisfies all

requirements in Proposition 4.2.2.

When P = A ∪ A′ is a bipartite poset and (a, a′) ∈ Inc(A,A′), we let L(a, a′, P )

denote the set of linear extensions of P satisfying the requirements of Proposition 4.2.2

for the pair (a, a′).

Lemma 4.2.3. Let P = A∪A′ be a bipartite poset and letM = (T, T ′) be a maximal

matching in P . If the size of M is t, then Idim(P ) ≤ t.

Proof. Let T = {a1, a2, . . . , at} ⊆ A and T ′ = {a′1, a′2, . . . , a′t} ⊆ A′ with aj ‖ a′j for

each j = 1, 2, . . . , t. Then for each j = 1, 2, . . . , t, let Lj ∈ L(aj, a
′
j, P ). The family

F = {L1, L2, . . . , Lt} is a realizer for A× A′.

The following lemma is implicit in EKT and explicit in [5].

Lemma 4.2.4. Let P = A∪A′ be a bipartite poset with Inc(A,A′) 6= ∅. If Idim(P ) =

d, then there exists a family of linear extensions F = {L1, L2, . . . , Ld} which reverses

A×A′, subsets T = {a1, a2, . . . , ad} and T ′ = {a′1, a′2, . . . , a′d} of A and A′, respectively,

so thatM = (T, T ′) is a matching in P and Lj ∈ L(aj, a
′
j, P ) for every j = 1, 2, . . . , d.

Proof. Let F = {L1, L2, . . . , Ld} be a family of linear extensions of P which reverses

A × A′. We modify the linear extensions in F according to the following iterative
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process: Suppose that 1 ≤ j ≤ d and that the procedure has already been applied to

all Li with 1 ≤ i < j.

Let aj be the highest element of A in Lj and let a′j be the lowest element of A′

in Lj. Then aj ‖ a′j in P and aj > a′j in Lj; otherwise, we can delete Lj from F and

obtain a new family of linear extensions of size d− 1 which also reverses A× A′.

Group all elements of A′ which are incomparable with aj in P but higher than aj

in Lj and put them in a block immediately under aj. The order on these elements (if

there are any) stays unchanged. Dually, group all elements of A which are incompa-

rable with a′j in P but lower than a′j in Lj and put them in a block immediately over

a′j.

Finally, if j < d, move aj to the bottom of Li for all i with j < i ≤ d. Dually, move

a′j to the top of Li for all i with j < i ≤ d. It is easy to see that when this iterative

process completes, the modified family of linear extensions F and the appropriate

matching M = (T, T ′) will be obtained.

4.3 Upper Bounds, Latin Rectangles and Euler Functions

One of the advantages of working with the parameter Idim(P ) for bipartite posets is

that it can be defined in terms of linear orders on one of the two sides. To be more

precise, when P = A ∪ A′ is a bipartite poset, and Inc(A,A′) 6= ∅, then Idim(P ) is

the least positive integer d for which there is a family F = {L1, L2, . . . , Ld} of linear

orders on A satisfying the following property:

Realizer Property. For every pair (a, a′) ∈ Inc(A,A′), there is some j with 1 ≤ j ≤ d,

so that a′ ‖ b in P for all b ∈ A with 0 ≤ hj(b) < hj(a).

Of course, this definition can also be applied in terms of linear orders on A′.

Regardless, as we progress through the chapter, readers may note that in some cases,

we will find it convenient to emphasize the one-sided formulation of dimension, while

in other cases, the role of matchings and the symmetry of the two-sided perspective
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will be more important.

All the results in this first section will emphasize the one-sided definition of di-

mension. We begin with an elementary proof of Theorem 4.1.7. It differs from the

original proof of the upper bound in Theorem 4.1.6 in that we want to move away

from considering a family of independent events, and work instead with expected

value.

Proof. Let ε > 0 and log1+ε n/n < q ≤ 1/2. Set m = qn/((2 + ε) log n) and t =

n −m. We will then show that, almost surely Idim(P ) ≤ t. To accomplish this, we

set r = t/m and construct a family F = {L1, L2, . . . , Lt} of linear orders on A as

follows. First, let T = {a1, a2, . . . , at} be an arbitrary t-element subset of A. For each

j = 1, 2, . . . , t, we make aj the highest element of Lj, i.e., we set hj(aj) = 0.

Let M = A − T , and let {x1, x2, . . . , xm} be a labelling of the elements of M .

Then for every α = 1, 2, . . . ,m, we set hj(xα) = 1 when (α − 1)r < j ≤ αr. The

ordering on the remaining n− 2 elements of A in Lj is arbitrary.

Let X be the random variable which counts the number of pairs (a, a′) ∈ A× A′

for which a ‖ a′ in P and there is no j with 1 ≤ j ≤ t for which hj(a) ≤ 1 and a′ ‖ b

for every b ∈ A with 0 ≤ hj(b) < hj(a). Note that there are no such pairs when
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a ∈ T . It follows that the expected value of X is given by:

E[X] = |A− T ||A′| · q(1− q)r

= mnq(1− q)t/m

< n2qe−qt/m

= n2e−qn/mqeq

< n2e−qn/m

= e2 logn−(2+ε) logn

= e−ε logn

= n−ε

< ε.

By Markov’s inequality, we have Pr(X ≥ 1) ≤ E[X] < ε, i.e., X = 0 almost surely.

We note that when X = 0, the family F witnesses that Idim(P ) ≤ t. Therefore

almost surely we have Idim(P ) ≤ t.

We note that the lower bound q > (log1+ε n)/n serves only to insure that m is

large so that round off errors can be ignored.

On the one hand, at least for a very wide range of values of q, we will see that

the simple construction in Theorem 4.1.7 is remarkably close to being best possible.

Nevertheless, a delicate improvement can still be made by paying greater attention

to the details of the construction. In fact, we will present two fundamentally different

approaches, and we consider it surprising that ultimately, the two approaches yield

the same end result. Our first approach carries on in the spirit of the preceding proof.

4.3.1 Generalized Latin Rectangles

Recall that when m and s are integers with 1 ≤ s ≤ m, an s ×m array (matrix) R

is called a latin rectangle when (1) each row of R is a permutation of the integers in
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{1, 2, . . . ,m}, and (2) the entries in each column of R are distinct. One of the classic

results in combinatorial theory asserts that if 1 ≤ s < m, an s×m latin rectangle R

can always be extended to a (s+ 1)×m latin rectangle.

Now let (m, r, s) be a triple of positive integers. An s×(rm) array R will be called

an (m, r, s)-generalized latin rectangle (GLR) when the following conditions are met:

1. In each row of R, each symbol in {1, 2, . . . ,m} occurs exactly r times.

2. In each column C of R, the s symbols in {1, 2, . . . ,m} occurring in column C

are distinct.

3. For each distinct pair i, j ∈ {1, 2, . . . ,m}, there is at most one column C in R

for which i is below j in column C.

Note that when r = 1, the third requirement is not part of the traditional definition

for a latin rectangle. However, it will be soon be clear why we want this additional

restriction in place.

Here is an example of a (9, 2, 3)-GLR.


1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

8 9 9 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8

3 6 4 7 5 8 6 9 7 1 8 2 9 3 1 4 2 5


We note that it is impossible to extend this array to a (9, 2, 4)-GLR (as a result of

Lemma 4.3.1). Nevertheless, we have the following natural extremal problem: For a

pair (m, r) of positive integers, what is the largest s for which there is an (m, r, s)-

GLR? For an upper bound, we have the following result.

Lemma 4.3.1. Let m, r and s be positive integers. If there is an (m, r, s)-GLR, then

rs(s− 1) ≤ 2(m− 1).
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Proof. Suppose that R is an (m, r, s)-GLR. There are rm columns in R and for

each column C in R, there are s(s − 1)/2 ordered pairs (i, j) where i is below j

in column C. The last two conditions in the definition of an (m, r, s)-GLR force

rms(s− 1)/2 ≤ m(m− 1), so that rs(s− 1) ≤ 2(m− 1).

Lower bounds on this extremal problem are more challenging, but the following

bound will be sufficient for our purposes. Note that the proof mimics the argument

for the classic result for latin rectangles.

Lemma 4.3.2. Let m, r and s be positive integers. If rs2(s + 1) < m, then any

(m, r, s)-GLR can be extended to an (m, r, s+ 1)-GLR.

Proof. Let R be an arbitrary (m, r, s)-GLR. Naturally, we view R as a union of r

latin rectangles, each of size s × m. We show that it is possible to extend each of

those r latin rectangles to s+ 1 rows by adding an appropriately chosen new row at

the bottom, and the union of r new latin rectangles forms (m, r, s+ 1)-GLR.

Assume the first k(< r) latin rectangles have been extended to s + 1 rows. We

show that it is possible to extend the (k + 1)-th latin rectangle to s + 1 rows while

the following condition is satisfied: For each distinct pair i, j ∈ {1, 2, . . . ,m}, there is

at most one column C of all r latin rectangles for which i is below j in column C.

For each i = 1, 2, . . . ,m, the symbol i appears in s columns of the (k+ 1)-th latin

rectangle, and we cannot add i to the bottom of any of these columns. Counting all

rs+k appearances of symbol i in all r latin rectangles, there are exactly ks+rs(s−1)/2

other symbols which appear above i. If the other occurrences of these symbols are

in distinct columns, then together, they would rule out at most s[ks + rs(s − 1)/2]
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other columns of the (k + 1)-th latin rectangle. Since

s+ s[ks+ rs(s− 1)/2] = s[1 + ks+ rs(s− 1)/2]

≤ s[1 + (r − 1)s+ rs(s− 1)/2]

≤ s[rs+ rs(s− 1)/2]

= rs2(s+ 1)/2

< m/2

we conclude that there are at least m/2 columns where symbol i could be added

legally at the bottom.

If such extension does not exist, then by Hall’s theorem, there would be a subset

S ⊆ {1, 2, . . . ,m} so that the number of columns of the (k + 1)-th latin rectangle for

which there is some symbol in S which could legally be added at the bottom is less

than |S|. But since any symbol has at least m/2 legal choices for columns, it requires

that |S| > m/2.

But we claim for any column C of the (k + 1)-th latin rectangle, and any subset

S of size at least m/2, there is at least one symbol in S which could be legally placed

at the bottom of column C.

To see this, let i be one of the s symbols in column C. We consider the number of

symbols which cannot be appended to the bottom of C. Clearly symbol i cannot be

appended to the bottom of C. Counting all rs + k appearances of symbol i in all r

latin rectangles, there are exactly ks+ rs(s−1)/2 other symbols which appear below

i. If those symbols are all distinct for different symbol i in column C, then at most

s+ s[ks+ rs(s− 1)/2] symbols would be ruled out. However,

s+ s[ks+ rs(s− 1)/2] ≤ rs2(s+ 1)/2 < m/2.

So more than m/2 symbols can be legally placed at the bottom of column C. This

observation completes the proof of the lemma.
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4.3.2 Applying Generalized Latin Rectangles

Let (m, r, s) be a triple of positive integers and suppose that R is an (m, r, s)-GLR.

Set t = rm and let |A| = t+m. We use R to construct a family F = {L1, L2, . . . , Lt}

of linear orders on A.

First, let T = {aj : 1 ≤ j ≤ t} be an arbitrary t-element subset of A. Then

label the elements in M = A− T as {x1, x2, . . . , xm}. For each j = 1, 2, . . . , t, we set

hj(aj) = 0, i.e., aj is the highest element of Lj. Also, if the symbol α appears in row i

and column j in the array R, we set hj(xα) = i.

These rules determine the highest s + 1 positions in Lj for each j = 1, 2, . . . , t.

The order of the remaining n− s− 1 elements of A in Lj is arbitrary.

Let X be the random variable that counts the number of pairs (a, a′) ∈ A × A′

with a ‖ a′ in P but there is no value of j with 1 ≤ j ≤ t for which 0 ≤ hj(a) ≤ s

and a′ ‖ b in P for all b ∈ A with 0 ≤ hj(b) < hj(a). As before, there are no such

pairs when a ∈ T .

Fix an element a ∈ A and let L = {Lj : 0 ≤ hj(a) ≤ s, 1 ≤ j ≤ t}. Based on the

third property of an (m, r, s)-GLR, all elements b ∈ A with 0 ≤ hj(b) < hj(a), Lj ∈ L

are distinct. Therefore, the expected value of X is given by:

E[X] = |A− T ||A′| · q
s∏
i=1

(1− qi)r = nmq
s∏
i=1

(1− qi)r. (2)

Same as before, an upper bound on the expected value of Idim(P ) can then be

obtained by analyzing conditions on the parameters which drive E[X] to 0. But we

postpone the analysis to Section 4.3.4.

4.3.3 Another Upper Bound Construction

In some sense, this first construction takes an “egalitarian approach”: While there

is no escaping that some set T of elements in A get differential treatment and are

positioned at the very top of a linear order L in F , all the remaining elements of A are
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treated in exactly the same way. But we may consider another, completely different

construction, one which continues the pattern of treating certain elements of A in a

preferential manner relative to others.

We consider a partition M = M1 ∪M2 ∪ · · · ∪Ms. In some sense, this partition

divides elements of M into classes and elements in Mi1 will be positioned higher in

our linear orders than elements in Mi2 when 1 ≤ i1 < i2 ≤ s.

To be more concrete, for each j = 1, 2, . . . , t, we construct a linear order Lj on A

using the following rules:

Only the highest s+1 positions in Lj will be specified. The order on the remaining

elements is arbitrary. As before, we make aj the highest element of Lj. After that

basic step, we place the following three additional constraints on the construction,

noting that all except possibly the third constraint are easy to satisfy.

1. For each i = 1, 2, . . . , s and each j = 1, 2, . . . , t, if x ∈ M and hj(x) = i, then

x ∈Mi.

2. For each i = 1, 2, . . . , s and each x ∈ Mi, there are t/|Mi| different values of j

with hj(x) = i.

3. For each pair 1 ≤ i1 < i2 ≤ s and each pair x ∈ Mi1 , y ∈ Mi2 , there is at most

one j with 1 ≤ j ≤ t so that hj(x) = i1 and hj(y) = i2.

The resulting family is a realizer for A× A′ when the following modified realizer

property is satisfied.

Modified Strong Realizer Property. For every pair (a, a′) ∈ Inc(A,A′) with a ∈ Mi,

there is some integer j with 1 ≤ j ≤ t such that hj(a) = i and a′ ‖ b in P for all

b ∈ A with 0 ≤ hj(b) < i.

Now let Yi be the random variable that counts the number of pairs (a, a′) ∈Mi×A′

for which a ‖ a′ in P and there is no j with hj(a) = i and a′ ‖ b for all b ∈ A with
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0 ≤ hj(b) < i. Then, similar as before, the expected value of Yi is given by

E[Yi] = |Mi||A′| · q(1− qi)t/|Mi| = |Mi|nq(1− qi)t/|Mi|.

Considering the form of the above expression of E[Yi], it makes sense to add the

following constraint to the construction to achieve uniformity:

4. For each i = 1, 2, . . . , s, (1− q)t/|M1| = (1− qi)t/|Mi|.

Now let Y = Y1 + Y2 + · · ·+ Ys. Then the expected value of Y is given by:

E[Y ] =
s∑
i=1

E[Yi]

=
s∑
i=1

|Mi|nq(1− qi)t/|Mi|

=
s∑
i=1

|Mi|nq(1− q)t/|M1|

= nq(1− q)t/|M1|
s∑
i=1

|Mi|

= nmq(1− q)t/|M1|.

4.3.4 Comparting Two Upper Bounds

Returning to our previous calculation for the expected value E[X], we observe that:

E[X] = nmq

s∏
i=1

(1− qi)r

= nmq

s∏
i=1

(
(1− q)|Mi|/|M1|

)t/m
= nmq

s∏
i=1

(1− q)t|Mi|/(m|M1|)

= nmq(1− q)t(|M1|+|M2|+···+|Ms|)/(m|M1|)

= nmq(1− q)t/|M1|

= E[Y ].
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So while it is intuitively clear that this second construction can be carried out for

relatively large values of s, there is no reason to waste time with the effort, as it will

lead to the same result. As we have commented previously, we find it surprising that

these two approaches, which we consider quite different in spirit, lead to exactly the

same place. And this observation is a major part of our faith in Conjecture 4.1.9.

We now return to the task of analyzing the Equation 2. Let ε be any small positive

constant and let

m =
n(log(1/φ(q))

(2 + ε) log n
.

Then set t = n−m. Recall that φ(q) is the Euler function:

φ(q) =
∞∏
i=1

(1− qi).

We show that almost surely, Idim(P ) ≤ t by showing that E[X] < ε, provided

that n is sufficiently large. Note that when n is large, we certainly have the inequality

t > (1− ε/10)n. Also, using Lemma 4.3.2, with r = t/m, we can take

s = 3
√
m/r = 3

√
m2/t > 3

√
m2/n > n1/4

Since q ≤ 1/2, it then follows easily that when n is large, we have

log
(
1/

s∏
i=1

(1− qi)
)
> (1− ε/10) log

(
1/

∞∏
i=1

(1− qi)
)

= (1− ε/10) log(1/φ(q))
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Taking logarithms of Equation 2, we see that

logE[X] = log
(
nmq

s∏
i=1

(1− qi)r
)

< 2 log n+
t

m
log
( s∏
i=1

(1− qi)
)

= 2 log n− t

m
log
(
1/

s∏
i=1

(1− qi)
)

= 2 log n− t

n

log
(
1/
∏s

i=1(1− qi)
)

log(1/φ(q))
(2 + ε) log n

< 2 log n− (1− ε/10)(1− ε/10)(2 + ε) log n

< −ε log n/2.

This completes the proof of Theorem 4.1.8.

4.4 Improved Lower Bounds on Dimension

As we begin this section, we comment that the symbols R, s and r will be used here

in a manner consistent with EKT, and they will no longer have any connection with

material from the preceding section. Also, following EKT, our treatment of lower

bounds will require a second variation on dimension, and this parameter is called

short dimension. It requires some additional notation and terminology, starting with

the notion of a “mixing threshold”.

When s is a positive integer with s ≤ n, we say a bipartite poset P = A ∪ A′

is s-mixed if for all subsets U ⊆ A, U ′ ⊆ A′ with |U | = |U ′| = s, there is a pair

(u, u′) ∈ U×U ′ with u < u′ in P . The following elementary lemma is proved in EKT.

Lemma 4.4.1. If limn→∞ pn = ∞ and b2 log pn/pc ≤ s ≤ n, then in the probability

space Ω(n, p), almost surely, P is s-mixed.

When q ≤ 1/2, this lemma, while entirely correct, can be tightened. Here is an

elementary update.
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Lemma 4.4.2. Let 1/n1−ε < q ≤ 1/2 and let s = (2 + ε) log n/ log(1/q). Then in the

probability space Ω(n, p), almost surely, P is s-mixed.

Proof. Note that since q > n−1+ε, s ≥ 2. Let X count the number of pairs (U,U ′)

where U and U ′ are s-element subsets of A and A′ respectively, with u ‖ u′ in P for

all (u, u′) ∈ U × U ′. Then the expected value of X is given by:

E[X] =

(
n

s

)2

qs
2

< n2sqs
2

= n2s(1/q)−s
2

.

It follows that

log(E[X]) < s(2 log n− s log(1/q)) = −sε log n.

So that E[X] < n−εs → 0. This shows that almost surely, P is s-mixed.

So for the remainder of this section, the value of s is fixed at s = (2+ε) log n/ log(1/q).

We note that when q ≤ n−1/4, s is in fact at most 9.

4.4.1 Short Families, Short Realizers and Short Dimension

Let F = {L1, L2, . . . , Lt} be a family of linear extensions of a bipartite poset P = A∪

A′ which reverses A×A′. Assume further that P is s-mixed. For each j = 1, 2, . . . , t,

consider the 4-tuple (Bj, σj, B
′
j, σ
′
j) where:

1. Bj is the subset of A consisting of the s highest elements of A in Lj and σj is

the restriction of Lj to Bj; and

2. B′j is the subset of A′ consisting of the s lowest elements of A′ in Lj and σ′j is

the restriction of Lj to B′j.

It follows that for every subset S ⊆ A× A′, the following property is satisfied:

Short Realizer Property. For every pair (a, a′) ∈ S, if a ‖ a′ in P , then there is some

j with 1 ≤ j ≤ t for which one of the following two statements holds:
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1. a ∈ Bj and a′ ‖ b in P for every b ∈ Bj which is higher than a in σj.

2. a′ ∈ B′j and a ‖ b′ in P for every b′ ∈ B′j which is lower than a′ in σ′j.

In the discussion to follow, we will refer to a family Σ = {(Bj, σj, B
′
j, σ
′
j) : 1 ≤

j ≤ t} as a short family when for all j = 1, 2, . . . , t, Bj and B′j are s-element subsets

of A and A′, respectively, and σj and σ′j are linear orders on Bj and B′j, respectively.

Note that we do not restrict our attention to short families which arise from families

of linear extensions of P .

When S ⊆ A×A′, we say that Σ is a short realizer for S when the Short Realizer

Property specified above is satisfied. We then define the short dimension of a bipartite

poset P = A ∪ A′, denoted sdim(P ), as the least d for which there is a short family

Σ = {(Bj, σj, B
′
j, σ
′
j) : 1 ≤ j ≤ d} which is a short realizer for A× A′.

There is a natural connection between dimension and short dimension.

Lemma 4.4.3. If P = A ∪ A′ is s-mixed, then sdim(P ) ≤ Idim(P ).

Proof. Let F = {L1, L2, . . . , Lt} be a realizer which witnesses Idim(P ) = t. We

consider a pair (a, a′) ∈ A×A′ with a ‖ a′ in P . Since a ‖ a′ in P , there is some Lj in

F so that a > a′ in Lj. Same as before, we define Bj be the subset of A consisting of

the s highest elements of A in Lj and σj be the restriction of Lj to Bj; and B′j be the

subset of A′ consisting of the s lowest elements of A′ in Lj and σ′j be the restriction

of Lj to B′j.

Note that we have either a ∈ Bj or a′ ∈ B′j. Suppose not and a 6∈ Bj and a′ 6∈ B′j.

Then in Lj we have Bj > a > a′ > B′j, which implies u ‖ u′ for all (u, u′) ∈ Bj × B′j.

This contradicts the fact that P is s-mixed.

We assume, without loss of generality, that a ∈ Bj. As a > a′ in Lj, we must

have a′ ‖ b in P for every b ∈ Bj which is higher than a in σj. Therefore the short

family Σ = {(Bj, σj, B
′
j, σ
′
j) : 1 ≤ j ≤ t} we constructed, based on F , is in fact a

short realizer of P . Hence sdim(P ) ≤ Idim(P ).
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Now we fix an arbitrary short family Σ = {(Bj, σj, B
′
j, σ
′
j) : 1 ≤ j ≤ t} and

consider the event R = R(Σ) that Σ is a short realizer for A×A′. Following EKT, if

we can find an upper bound p0 of Pr(R) for all Σ, then we will have a lower bound

on sdim(P ). To see this, suppose we have an upper bound p0 of Pr(R). Note that

the number of short families is relatively small. In fact it is at most (P (n, s))2t as we

count all s-permutation of n objects. Since (P (n, s))2t < n2st, we can be assured that

almost surely sdim(P ) > t provided p0n
2st < ε.

As noted in EKT, in finding an upper bound p0 on Pr(R), we can restrict our

attention to short families satisfying the following two conditions.

1. There is a t-element subset T = {a1, a2, . . . , at} ⊆ A so that if 1 ≤ j1, j2 ≤ t,

then aj1 is the highest element of Bj1 in σj1 , and if j2 6= j1, then aj1 6∈ Bj2 .

2. There is a t-element subset T ′ = {a′1, a′2, . . . , a′t} ⊆ A′ so that if 1 ≤ j1, j2 ≤ t,

then a′j1 is the lowest element of B′j1 in σ′j1 , and if j2 6= j1, then a′j1 6∈ B
′
j2

.

Accordingly, we will set M = A− T and M ′ = A′ − T ′ and let m = |M | = |M ′|.

The reason that we can focus only on those short families is that suppose aj is

the highest element of Bj in σj for some j, all pairs (a, a′) ∈ A×A′ with a = aj and

a ‖ a′ can be reversed by the short realizer property. Therefore, as we are looking for

an upper bound p0 of Pr(R), there is no advantage to placing aj in other Bi’s with

i 6= j. If aj appears in some Bi with i 6= j, we can simply remove aj from Bi, push all

elements below aj in σi up one position, and add a new element to Bi as the bottom

of σi. Note that this can only increase the probability that a given short family is a

short realizer.

In the text follows, we will assume Σ satisfies the above two conditions.

Recall that R = R(Σ) is the event that Σ is a short realizer for A×A′. To estimate

the probability that R will occur, we write R into intersections of simpler events. Let

73



R(a, a′) denote the event that Σ realizes pair (a, a′). Then we have

R =
⋂

(a,a′)∈A×A′
R(a, a′).

Note that we have either a ‖ a′, or a < a′. We let (a < a′) be the event that a < a′

in P . Let Qj(a, a
′) denote the event that pair (a, a′) is realized via σj, i.e., a ∈ Bj

and a′ ‖ b in P for every b ∈ Bj which is higher than a in σj. Dually, let Q′j(a, a
′)

denote the event that pair (a, a′) is realized via σ′j, i.e., a′ ∈ B′j and a ‖ b′ in P for

every b′ ∈ B′j which is lower than a′ in σ′j. Then Let Q(a, a′) = ∪tj=1Qj(a, a
′) and

Q′(a, a′) = ∪tj=1Q
′
j(a, a

′). Then we have

R(a, a′) = (a < a′) ∪Q(a, a′) ∪Q′(a, a′).

Note that Q(a, a′) and Q′(a, a′) are defined independent of the relation between

a and a′. Also, Q(a, a′) concerns the relations between a′ and b where a 6= b, while

Q(a, a′) concerns the relations between a and b′ where a′ 6= b′. Hence all three events

(a < a′), Q(a, a′) and Q′(a, a′) are mutually independent. Therefore

¬R(a, a′) = ¬(a < a′) ∩ ¬Q(a, a′) ∩ ¬Q′(a, a′)

And

Pr(¬R(a, a′)) = Pr(¬(a < a′)) Pr(¬Q(a, a′)) Pr(¬Q′(a, a′))

= q Pr(¬Q(a, a′)) Pr(¬Q′(a, a′))

Now we want to estimate the probability of ¬Q(a, a′) and ¬Q′(a, a′). As they are

symmetric, we will focus only on Pr(¬Q(a, a′)). By definition, we have ¬Q(a, a′) =

∩tj=1¬Qj(a, a
′). Note that the events Qj(a, a

′), 1 ≤ j ≤ t are not necessarily inde-

pendent. However, we shall see that they are positively correlated. To prove this,

we need the following Ahlswede and Daykin [1] inequality, which was first proved by

Kleitman [31].
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Proposition 4.4.4. If P on ground set X is the family of subsets of a finite set

ordered by inclusion, and U1 and U2 are up sets of X, then |U1|/|X| ≤ |U1∩U2|/|U2|.

Lemma 4.4.5. The events ¬Qj(a, a
′), 1 ≤ j ≤ t are positively correlated.

Proof. For each 2 ≤ i ≤ t, let Ei = ∩i−1j=1¬Qj(a, a
′). Using conditional probability, we

have

Pr(¬Q(a, a′)) = Pr[∩tj=1¬Qj(a, a
′)]

= Pr(¬Q1(a, a
′)) Pr(¬Q2(a, a

′) | E2) · · ·Pr(¬Qt(a, a
′) | Et)

For P, P ′ ∈ Ω(n, p), we let P ⊆ P ′ if and only if for all (a, a′) ∈ A × A′, a < a′ in

P implies a < a′ in P ′. For each (a, a′) ∈ A × A′ and 1 ≤ j ≤ t, note that event

¬Qj(a, a
′) is an up set in Ω(n, p). For each 2 ≤ i ≤ t, as Ei is the intersection of up

sets, Ei is also an up set in Ω(n, p). Applying Proposition 4.4.4, we have

Pr(¬Q(a, a′)) = Pr(¬Q1(a, a
′)) Pr(¬Q2(a, a

′) | E2) · · ·Pr(¬Qt(a, a
′) | Et)

≥ Pr(¬Q1(a, a
′)) Pr(¬Q2(a, a

′)) · · ·Pr(¬Qt(a, a
′))

=
t∏

j=1

Pr(¬Qj(a, a
′))

Therefore the events ¬Qj(a, a
′), 1 ≤ j ≤ t are positively correlated.

Following Lemma 4.4.5, we have

Pr(¬Q(a, a′)) ≥
t∏

j=1

Pr(¬Qj(a, a
′))

≥
t∏

j=1

(1− qσj(a))

The same formula also applies to Pr(¬Q′(a, a′)).

Pr(¬Q′(a, a′)) ≥
t∏

j=1

Pr(¬Q′j(a, a′))

≥
t∏

j=1

(1− qσ′j(a′))
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Therefore

Pr(¬R(a, a′)) = q Pr(¬Q(a, a′)) Pr(¬Q′(a, a′))

≥ q

t∏
j=1

(1− qσj(a))(1− qσ′j(a′))

Recall that our goal is to find an upper bound of Pr(R). However, we can not

estimate Pr(R) directly, as events R(a, a′) where (a, a′) ∈ A×A′ are not independent.

Moreover, events R(a, a′) where (a, a′) ∈ A × A′ are not negatively correlated, i.e.,

we do not know if Pr(R) ≤
∏

(a,a′)∈A×A′ Pr(R(a, a′)). Note that we do need a similar

inequality, as we are looking for an upper bound of Pr(R).

In order to overcome the obstacle, we shall restrict our attention to a smaller set

S, where S is a proper subset of A×A′. It will be clear later that the events R(a, a′)

“restricted” on S are independent.

Let X ⊆ M and X ′ ⊆ M ′. For (a, a′) ∈ X ×X ′, let R(a, a′/X,X ′) be the event

that Σ realizes pair (a, a′) over X and X ′. (Note that we need not to worry about

pair (a, a′) with a ∈ T or a′ ∈ T ′, as all such pairs are realized automatically per the

short realizer property.) To be more precise, we define

R(a, a′/X,X ′) = (a < a′) ∪Q(a, a′/X) ∪Q′(a, a′/X ′).

where

Q(a, a′/X) =
t
∪
j=1

Qj(a, a
′/X);

Q′(a, a′/X ′) =
t
∪
j=1

Q′j(a, a
′/X ′).

Here Qj(a, a
′/X) is the event that pair (a, a′) is realized via σj over X, i.e., a ∈ Bj

and a′ ‖ b in P for every b ∈ {aj} ∪ (X ∩ Bj) which is higher than a in σj. Dually,

Q′j(a, a
′/X ′) is the event that pair (a, a′) is realized via σ′j over X ′, i.e., a′ ∈ B′j and

a ‖ b′ in P for every b′ ∈ {a′j} ∪ (X ′ ∩B′j) which is lower than a′ in σ′j.

Note that since Qj(a, a
′) ⊆ Qj(a, a

′/X) and Q′j(a, a
′) ⊆ Q′j(a, a

′/X ′), we have

Q(a, a′) ⊆ Q(a, a′/X) andQ′(a, a′) ⊆ Q′(a, a′/X ′). ThereforeR(a, a′) ⊆ R(a, a′/X,X ′).
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We mention that there is a natural generalization of the height function that we

defined earlier in Section 4.2. When X ⊆M and 1 ≤ j ≤ t, hj(a/X), the height of a

over X in σj, is defined as:

hj(a/X) =

 |{b ∈ {aj} ∪ (X ∩Bj) : b > a in σj}| if a ∈ X ∩Bj

∞ otherwise

Similarly, when X ′ ⊆M ′ and 1 ≤ j ≤ t, the height of a′ over X ′ in σ′j is defined as:

h′j(a
′/X ′) =

 |{b
′ ∈ {a′j} ∪ (X ′ ∩B′j) : b′ < a′ in σ′j}| if a′ ∈ X ′ ∩B′j

∞ otherwise

For a ∈ X and 1 ≤ k ≤ s − 1, let the k-multiplicity of a over X be uk(a/X) =

|{j : hj(a/X) = k}|. Dually, the k-multiplicity of a′ over X ′ be u′k(a
′/X ′) = |{j :

h′j(a
′/X ′) = k}|.

Next, we define a weight function w. Let the weight of a over X be w(a/X) where

w(a/X) =
s−1∑
i=1

ui(a/X)21−i.

The weight of a′ over X ′ is defined dually.

Before we start to estimate the probability of R(a, a′/X,X ′), we need the following

elementary proposition.

Proposition 4.4.6. Let 0 < q ≤ 1/2. Then for every integer i ≥ 1 and every positive

real number x, we have

(1− qi)x < (1− qi+1)2x.

Proof. The stated inequality is equivalent to 1 − qi < (1 − qi+1)2. But this holds if

and only if 1 − qi < 1 − 2qi+1 + q2i+2, which is equivalent to qi(1 − 2q + qi+2) > 0.

Clearly the inequality holds for 0 < q ≤ 1/2.

Now we shall focus on Pr(R(a, a′/X,X ′)).

Lemma 4.4.7. Pr(R(a, a′/X,X ′)) ≤ 1− q(1− q)w(a/X)+w(a′/X′).
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Proof. Similar to the analysis of R(a, a′), events (a < a′), Q(a, a′/X) and Q′(a, a′/X ′)

are mutually independent. Recall that

R(a, a′/X,X ′) = (a < a′) ∪Q(a, a′/X) ∪Q′(a, a′/X ′).

Taking the negation of the above equation, we have

¬R(a, a′/X,X ′) = (a ‖ a′) ∩ ¬Q(a, a′/X) ∩ ¬Q′(a, a′/X ′).

Therefore,

Pr(¬R(a, a′/X,X ′)) = q Pr(¬Q(a, a′/X)) Pr(¬Q′(a, a′/X ′)).

Similar to the proof of Lemma 4.4.5, Proposition 4.4.4 also implies events ¬Qj(a, a
′/X),

1 ≤ j ≤ t are positively correlated. We have

Pr(¬Q(a, a′/X)) = Pr[∩tj=1¬Qj(a, a
′/X)]

≥
t∏

j=1

Pr(¬Qj(a, a
′/X))

=
t∏

j=1

(1− Pr(Qj(a, a
′/X)))

=
t∏

j=1

(1− qhj(a/X))

=
s−1∏
k=1

(1− qk)uk(a/X)

≥
s−1∏
k=1

(1− q)uk(a/X)21−k

= (1− q)w(a/X)

The second last line in this computation holds in view of Proposition 4.4.6. Dually

we have Pr(¬Q′(a, a′/X ′)) ≥ (1 − q)w(a′/X′). Hence Pr(R(a, a′/X,X ′)) ≤ 1 − q(1 −

q)w(a/X)+w(a′/X′).

Lemma 4.4.8. Let (X,X ′) ⊆ (M,M ′). The average value of w(a,X), for a ∈ X, is

at most 2t/|X|, and the average value of w(a′, X ′), for a′ ∈ X ′, is at most 2t/|X|.
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Proof. The total weight of all a ∈ X is∑
a∈X

w(a/X) =
∑
a∈X

s−1∑
k=1

uk(a/X)21−k

=
∑
a∈X

s−1∑
k=1

21−k|{j : hj(a/X) = k}|

≤
t∑

j=1

s−1∑
k=1

21−k

<
t∑

j=1

2

= 2t

Therefore the average value of w(a,X), for a ∈ X, is at most 2t/|X|. An analogous

statement holds for the subset X ′.

For each (a, a′) ∈ X ×X ′, recall that Qj(a, a
′/X) is the event that pair (a, a′) is

realized via σj over X, i.e., a ∈ Bj and a′ ‖ b in P for every b ∈ {aj} ∪ (X ∩ Bj)

which is higher than a in σj. We shall pay close attention to all such b’s associated

with the same a′. The witness set of a over X is defined as W (a/X) = {b ∈ X : a ≤

b in some σj}. Dually, the witness set of a′ over X ′ is W ′(a′/X ′) = {b′ ∈ X ′ : a′ ≥

b′ in some σ′j}. Then, the witness set of (a, a′) over (X,X ′) is defined as

W (a, a′/X,X ′) = ({a} ×W ′(a′/X ′)) ∪ (W (a/X)× {a′}).

We note that if the witness sets {W (a, a′/X(a), X ′(a′)) : (a, a′) ∈ S} are pairwise

disjoint, then events {R(a, a′/X(a), X ′(a′)) : (a, a′) ∈ S} are mutually independent.

Now we want to construct a set S ∈ A×A′ so that set S is not too small compare

to A × A′ and {W (a, a′/X(a), X ′(a′)) : (a, a′) ∈ S} are pairwise disjoint. The set S

will have form

S = ∪ri=1Si × S ′i,

where r = 2st2/m is a constant. We also require Si ∩ Sj = ∅ and S ′i ∩ S ′j = ∅ for all

1 ≤ i < j ≤ r.
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Lemma 4.4.9. If Si, 1 ≤ i ≤ r, satisfies the following conditions,

1. For 1 ≤ i ≤ r, if a, b ∈ Si and a 6= b, then W (a/X(a)) ∩W (b/X(b)) = ∅, and

so is a′, b′ ∈ S ′i.

2. For 1 ≤ i < j ≤ r, if a ∈ Si and b ∈ Sj, then a 6∈ W (b/X(b)), and so is a′ ∈ S ′i

and b′ ∈ S ′j.

Then {W (a, a′/X(a), X ′(a′)) : (a, a′) ∈ S} are pairwise disjoint.

Proof. Suppose there exist two distinct pairs (a, a′), (b, b′) ∈ S so that the intersec-

tion of W (a, a′/X(a), X ′(a′)) and W (b, b′/X(b), X ′(b′)) is not empty. Let (x, x′) be

the element in the intersection. Without loss of generality, we may assume a 6= b.

Condition (1) implies that a and b belong to different sets. Let a ∈ Si, b ∈ Sj

where, without loss of generality, 1 ≤ i < j ≤ r. As a 6∈ W (b/X(b)), we must have

(x, x′) ∈ ({b} ×W ′(b′/X ′(b′))) and (x, x′) ∈ (W (a/X(a))× {a′}). Therefore we have

a′ ∈ W (b′/X(b′)), which contradicts condition (2). This contradiction completes the

proof of Lemma 4.4.9.

In view of Lemma 4.4.9, we can now construct sets Si and S ′i independently. In

particular, we shall focus on sets Si, and the construction on S ′i will be similar. Recall

that M = A − T and m = |M | = n − t. On average, each element in M appears

(s− 1)t/m < st/m times in Σ. Hence there exists X ⊆M so that each element in X

appears at most 2st/m times in Σ and X ≥ |M |/2 = m/2.

For 1 ≤ i ≤ r, Si is a subset of X, and we require |Si| = m2/16s2t. Now we shall

construct Si inductively. Suppose we have constructed S1, S2, . . . , Sk and the first l

elements in Sk+1 with 0 ≤ k < r and 0 ≤ l < m2/16s2t. Let

Y = X − ∪ki=1Si − ∪{Bj : a ∈ Bj for some a ∈ Sk+1}.
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We have

|Y | ≥ |X| − k|Si| − s
2st

m
|Si|

≥ m

2
− 2s2t

m

m2

16s2t
− 2s2t

m

m2

16s2t

=
m

2
− m

8
− m

8

=
m

4

By Lemma 4.4.8, the average value of w(b, Y ), for b ∈ Y , is at most 2t/|Y |. Hence

there exists a ∈ Y such that w(a, Y ) ≤ 2t/|Y | ≤ 8t/m. Let a be the (l+1)-th element

in Sk+1, and let X(a) = Y . Note that if b is one of the first l elements in Sk+1, then

W (a/X(a)) ∩W (b/X(b)) = ∅ as we exclude all Bj where b ∈ Bj from Y . If b ∈ Si

where 1 ≤ i ≤ k, then b 6∈ X(a) as Si is excluded from Y . Hence b 6∈ W (a/X(a)). By

Lemma 4.4.9, {W (a, a′/X(a), X ′(a′)) : (a, a′) ∈ S} are pairwise disjoint. Therefore

events {R(a, a′/X(a), X ′(a′)) : (a, a′) ∈ S} are mutually independent.

Now we have an upper bound of Pr(R).

Lemma 4.4.10. Pr(R) ≤
(
1− q(1− q)16t/m

)m3/128s2t
.

Proof. This is now a straightforward calculation. Note that

R = ∩(a,a′)∈A×A′R(a, a′) ⊆ ∩(a,a′)∈SR(a, a′) ⊆ ∩(a,a′)∈SR(a, a′/X(a), X ′(a′)).

We have

Pr(R) ≤ Pr[∩(a,a′)∈SR(a, a′/X(a), X ′(a′))].

As events {R(a, a′/X(a), X ′(a′)) : (a, a′) ∈ S} are mutually independent, we have

Pr(R) ≤
∏

(a,a′)∈S

Pr(R(a, a′/X(a), X ′(a′))).
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By Lemma 4.4.7,

Pr(R) ≤
∏

(a,a′)∈S

1− q(1− q)w(a/X)+w(a′/X′)

≤
∏

(a,a′)∈S

1− q(1− q)16t/m

=
(
1− q(1− q)16t/m

)r|Si|2

=
(
1− q(1− q)16t/m

)m3/128s2t
.

4.4.2 Proof of Lower Bounds

In this subsection, we will prove the two lower bounds in Theorems4.1.10 and 4.1.11.

All of this will be done simply by analyzing the following inequality:

n2st
(
1− q(1− q)16t/m

)m3/128s2t
< ε.

As we stated before, the number of short families is relatively small. In fact it is at

most n2st. If the parameters m and t are chosen so that the above inequality holds,

then we can be assured that almost surely Idim(P ) ≥ sdim(P ) > t.

As the argument progresses, we will have developed a sequence of inequalities,

all of the form: x < εy where x = x(n, q, t,m, s) and y = y(n, q, t,m, s). We find it

convenient to work with the following short hand notation. Rather than considering

inequalities, we write “equations” using symbol “
.
=”. But now the “equation” x

.
= y

really means limn→∞ x/y = 0. With this convention, the three “equations” x
.
= y,

10x
.
= y and y

.
= 10x all have the same meaning. Note that when x and y both tend

to infinity, then x
.
= y has the same meaning as log x

.
= log y.

With these comments in mind, we then analyze the following “equation”, which

we refer to as the Master Equation (ME).

n2st
(
1− q(1− q)16t/m

)m3/128s2t .
= 1.
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Proof of Theorem 4.1.10. We consider the situation where C is a positive constant,

m = Cqn/ log n, and t = n −m. We assume further that m → ∞. Note that since

q ≤ 1/2, m = o(n) and t = (1− o(1))n.

With the given values for m and t, we note that:

1− q(1− q)16t/m = 1− qe−16qt/m = 1− qn−16/C .

So the ME becomes:

n2st(1− qn−16/C)m
3/128s2t .= 1.

Therefore

n2ste−qm
3/128s2tn16/C .

= 1.

So taking logarithms (and ignoring the constant), we obtain:

st log n
.
=

qm3

s2tn16/C
.

Substituting in for m, we then have:

s3n16/C log4 n
.
= q4C3n.

In view of the known value of s, we can take:

n16/C log7 n
.
= q4C3n log3 1/q. (3)

Note that if q ≤ n−1/4+4/C−ε, then q4n ≤ n16/C−4ε, which cannot be held in view of

the above “equation”. This explains the threshold value of q = n−1/4 in our lower

bounds. However, if we keep q ≥ n−1/4+ε, then the above “equation” holds when

C > 4/ε (the extra slack is there to absorb the log7 n term and the log3 1/q term).

With this observation, the proof of Theorem 4.1.10 is now complete.

Proof of Theorem 4.1.11. We return to the analysis of the ME and take C as a func-

tion of n and q. We shall focus on the case where log1+ε n/n < q ≤ n−1/4. Note that

when tq/m → ∞, i.e, when C = o(log n), q4C3n log3 1/q ≤ C3 log3 1/q < C3 log3 n.

83



In view of “equation” (3), we then have n16/C log7 n = C3 log3 n, which is clearly false

for C = o(log n). Therefore, we must have C = Ω(log n). So there exists a constant

c so that C ≥ 16c log n.

Since q ≤ 1/2, we have m = o(n) and t = (1− o(1))n. With the given values for

m and t, we note that:

1− q(1− q)16t/m = 1− qe−16qt/m ≤ 1− qe−1/c.

So the ME becomes:

n2st(1− qe−1/c)m3/128s2t .= 1.

Therefore

n2ste−qe
−1/cm3/128s2t .= 1.

So taking logarithms (and ignoring the constant), we obtain:

st log n
.
=
qm3

s2t
.

Substituting in for m, we then have:

s3 log n
.
= C3q4n.

Note that when q ≤ n−1/4, s is a small constant, so our equation becomes:

log n
.
= C3q4n.

The above “equation” holds if C3q4n = log1+ε n, i.e., C = n−1/3q−4/3 log(1+ε)/3 n. It

follows that almost surely, Idim(P ) > n−Cqn/ log n = n−n2/3q−1/3 log(ε−2)/3 n. This

completes the proof of Theorem 4.1.11.

An Aside on the EKT Lower Bound. In hindsight, most of the complexity in the

original EKT lower bound argument for Theorem 4.1.1 resulted from handling the case

when p = o(1/ log n). In this range, all of the nice structural properties associated

with our GLR constructions vanish since the subsets T and T ′ become very small

fractions of A and A′, respectively.
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4.5 An Extremal Problem and Its Implications for Random
Posets

Recall a classic theorem of Hiraguchi [25] which asserts that dim(P ) ≤ |P |/2, when

|P | ≥ 4. Combining results of [30] and [10], it is known that if d ≥ 4 and |P | ≤ 2d+1,

then dim(P ) < d unless P contains Sd. So it is natural to consider the following

question:

Question 4.5.1. Let P be a poset. Given that |P | is a large and dim(P ) is close to

|P |/2, is it true that P must contain a standard example Sd with d close to |P |/2?

On the one hand, the results of EKT warn us that the dimension will have to be

very close to |P |/2 in order to have such a result. This follows from the observation

that when p = 1/2, almost surely, dim(P ) > n− cn/ log n while the largest standard

example Sd contained in P is almost surely of size d ≤ 2 log n (as the cover graph of

Sd contains a complete bipartite graph Kd/2,d/2). Nevertheless, an affirmative answer

to this question was given by Biró, Hamburger, Pór and Trotter in [5].

Theorem 4.5.2. For every positive integer c, there is an integer f(c) = O(c2) so

that if n > 10f(c) and P is a poset with |P | ≤ 2n + 1 and dim(P ) ≥ n − c, then P

contains a standard example Sd with d ≥ n− f(c).

From below, it is shown in [5] that f(c) = Ω(c4/3). However, if one examines the

proof of Theorem 4.5.2 as presented in [5], there does not appear to be any way the

argument could be tweaked to lower the exponent on c below 2.

So in an effort to settle the question of the correct exponent on c in the function

f(c), it is natural to turn to the study of random posets—and just to get the general

idea, we temporarily ignore log n factors. Now we consider random posets from Ω(n, p)

with p = 1−1/
√
n. So on average, each point in min(P ) is incomparable to

√
n points

in max(P ), and vice versa. An easy calculation shows that the the largest standard

example in P would have size
√
n. Furthermore, the upper bound on dimension given
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in Theorem 4.1.6 is n−
√
n. If this bound is correct from below, then it follows that

the exponent 2 is correct.

But to our dismay, the lower bound from EKT in Theorem 4.1.3 was not strong

enough and it only implies: dim(P ) > n− n/ log n. This is not nearly enough to say

anything of interest about the about the extremal problem (in fact, it only shows that

f(c) = Ω(c log c)). So this shortcoming was another reason for revisiting the subject

of dimension for random posets.

Our improved results do allow us to say something about the function f(c). In the

following discussion, we simply ignore multiplicative constants. Setting q = n−1/4,

we know from Theorem 4.1.11 that almost surely, dim(P ) ≥ n − n3/4/ log(2−ε)/3 n.

Furthermore, an easy calculation shows that the largest standard example Sd in P

satisfies, almost surely, d ≤ n3/4 log n. Combining these two observations, we have

f(c) = Ω(c4/3 log8/9 c).

But just using the bounds obtained thus far, there does not seem to be any way

to push the exponent past 4/3. However, in [5], it is shown that f(c) = Ω(c4/3), using

a constructive approach, and the details of this approach will prove important here.

In [5], the authors consider a finite projective plane P with m2 +m+ 1 points and

m2 + m + 1 lines. Setting n = m2 + m + 1, they associate with P a bipartite poset

P = A ∪ A′ defined in the following natural way. A is taken to be the points of P

while A′ is the set of lines in P. Then a < a′ in P if and only if the point a is not

incident with the line a′ in P. Note that in finite projective plane P any two distinct

points determine a line, therefore we have the following observation.

Observation. In the finite projective plane P, two points determine a unique line, so

the poset P is 2-mixed.

The following result is implicit in the analysis of the dimension of this bipartite

poset as given in [5].
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Proposition 4.5.3. Let P = A∪A′ be a 2-mixed bipartite poset with Inc(A,A′) 6= ∅.

Then Idim(P ) is the minimum size of a maximal antichain matching in P .

It is known (see [5] for details) that the largest standard example in P has size at

most 1 +m3/2 while the minimum size of a maximal matching is m2 +m+ 1−m3/2.

These observations show dim(P ) ≥ m2 +m+ 1−m3/2 and f(c) = Ω(c4/3).

For general posets, these observations suggest that we should have a complemen-

tary notion of mixing. We say that a bipartite poset P = A ∪ A′ is r-blocked when

there does not exist a pair (V, V ′), where V and V ′ are r-element subsets of A and

A′ respectively, with v < v′ in P for every (v, v′) ∈ V × V ′.

With this notion in place, we can now express the following useful lemma. Again,

it is implicit in [5].

Lemma 4.5.4. If P is a 2-mixed, r-blocked bipartite poset in Ω(n, p), then Idim(P ) >

n− r.

Proof. Suppose Idim(P ) = d and let F = {L1, L2, . . . , Ld} be a realizer of P in the

standard form guaranteed by Lemma 4.2.4. Define the subsets T , T ′, M = A −M

and M ′ = A′ − T ′ as has been our standard practice. Then we claim that x < y

in P for every (x, y) ∈ M ×M ′. To see this, suppose to the contrary that there is

some pair (x, y) ∈ M ×M ′ with x ‖ y in P . Then there is some j with x > y in

Lj. However, this implies that both elements of {aj, x} are incomparable with both

elements of {a′j, y} in P , which would imply that P is not 2-mixed.

But since P is r-blocked, we know that n− d < r.

4.5.1 An Application of the Lovász Local Lemma

With Lemma 4.5.4 in mind, we can make progress on our extremal problem using the

asymmetric form of the celebrated Lovász Local Lemma [20]. The technical details

of our application of the lemma follow along lines which are quite similar to the

discussion on page 72 in the well known text [2] by Alon and Spencer.
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Let n be a large integer and consider parameters q and a reasonably large integer

r. Both q and r should be taken as variables whose values are to be determined.

We then consider a family E ∪ F of events. Events in E are called Type 1 events,

while events in F are called Type 2 events. Furthermore, |E| =
(
n
2

)2
and |F| =

(
n
r

)2
.

For each pair (U,U ′) where U is a 2-element subset of A and U ′ is a 2-element

subset of A′, a Type 1 event E(U,U ′) occurs when u ‖ u′ in P for all (u, u′) ∈ U ×U ′.

Then we have Pr(E(U,U ′)) = q4.

For each pair (V, V ′) where V is an r-element subset of A and V ′ is an r-element

subset of A′, a Type 2 event F (V, V ′) occurs when v < v′ in P for all (v, v′) ∈ V ×V ′.

Then we have Pr(F (V, V ′)) = (1− q)r2 = e−qr
2
.

Using generous estimates on the sizes of neighborhoods, it follows from the Local

Lemma that if we can find a 0 < q < 1, an 0 < r < n and two real numbers 0 ≤ x < 1

and 0 ≤ y < 1 such that

q4 ≤ x(1− x)4n
2

(1− y)n
2r

and

(1− q)r2 ≤ y(1− x)r
2n2

(1− y)n
2r

then with positive probability that a bipartite poset P in Ω(n, p) is 2-mixed and

r-blocked.

Our goal is to determine the largest possible value of r for which there are choices

for the remaining parameters which satisfy these constraints. We start by setting

(1 − y)n
2r

= e−1, i.e., we want yn2r = 1. Also we set x = 9q4. Then we will keep

1/x ≥ 4n2 so that the term (1 − x)4n
2

can be approximated by e−1. Therefore the

first constraint will always be satisfied and we can focus on the second.

Now the key idea is to set

y = (1− x)r
2n2

= e−qr
2/3.

In that way the second inequality will also hold.
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Plug in x = 9q4, we get

(1− 9q4)r
2n2

= e−9q
4r2n2

= e−qr
2/3.

Therefore we have q = 1/(3n2/3).

For variable y, we have

eqr
2/3 = y−1 = n2r = e2r logn.

Hence r = 6 log n/q = 18n2/3 log n.

We conclude that there exists a bipartite poset P = A ∪A′ which is 2-mixed and

r-blocked. It follows from Lemma 4.5.4 that Idim(P ) > n − r. On the other hand,

the largest value of d for which P contains a standard example Sd must clearly satisfy

d < 2r. Setting c = r = 18n2/3 log n, we see that f(c) = Ω
(
c3/2/ log3/2 c

)
.

4.5.2 The Implications of Being 2-Mixed

In the preceding section, Lemma 4.5.4 was applied to an exceptionally rare poset.

Now we use the Lemma 4.5.4 to complete the proofs of Theorems 4.1.12 and 4.1.13,

starting with the lower bound.

Suppose that log1+ε n/n < q ≤ n−4/5 log1/5 n. Let Y be a random variable which

counts pairs (U,U ′) where U and U ′ are 2-element subsets of A and A′ respectively

with u ‖ u′ in P for all (u, u′) ∈ U × U ′. Then we have E[Y ] =
(
n
2

)2
q4.

Lemma 4.5.5. If log1+ε n/n < q ≤ n−4/5 log1/5 n, then almost surely Y ≤ n4q4.

Proof. We use Chebyshev’s inequality to prove the lemma. Let Y = X1+X2+· · ·+Xr

where r =
(
n
2

)2
and each Xi is a indicator random variable, i.e., Xi = 1 if the
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corresponding 4-element set is in Y ; Xi = 0 otherwise. We have

Var[Y ] =
r∑
i=1

Var[Xi] +
∑
i 6=j

Cov[Xi, Xj]

≤
r∑
i=1

E[Xi] +
∑
i 6=j

Cov[Xi, Xj]

= E[Y ] +
∑
i 6=j

Cov[Xi, Xj]

≤
(
n

2

)2

q4 +

(
n

2

)2

q4 · 4n2q3 +

(
n

2

)2

q4 · 4nq2

= O(n4q4)

By Chebyshev’s inequality, we have

Pr(Y > n4q4) ≤ Pr(|Y − E[Y ]| > n4q4/2)

≤ 4Var[Y ]/n8q8

= O(n−4q−4)

≤ C/ log4+4ε n

Therefore almost surely we have Y ≤ n4q4.

Now we are ready to prove Theorem 4.1.13 and 4.1.12.

Proof of Theorem 4.1.13. By Lemma 4.4.1, almost all posets in P are 3 log n/q-blocked.

Let P be a poset which is 3 log n/q blocked and has Y ≤ n4q4. Then let Q = B ∪B′

be a bipartite subposet of P with |B| = |B′| = n − n4q4 so that Q is 2-mixed.

Also, since P is almost surely 3 log n/q-blocked, so is Q. This implies, by Lem-

ma 4.5.4, that almost surely Idim(Q) > n − n4q4 − 3 log n/q. Hence almost surely

Idim(P ) ≥ Idim(Q) > n−n4q4−3 log n/q. But in view of our bound on q, we can con-

clude that Idim(P ) > n− 4 log n/q. This completes the proof of Theorem 4.1.13.

Proof of Theorem 4.1.12. For the upper bound, we essentially reverse the above ar-

gument. We let Zr be the random variable which counts the number of pairs (V, V ′)
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for which |V | = |V ′| = r, v < v′ in P for all (v, v′) ∈ V ×V ′, and there is an antichain

matching in the bipartite subposet Q = (A − V,A′ − V ′). Again applying standard

probabilistic techniques, almost surely Zr ≥ 1 when r ≤ log n/q. However, this shows

that Idim(P ) ≤ n− log n/q. This completes the proof of Theorem 4.1.12.

Here it is important to note that for the first time, we have captured the “rebound-

ing” property for Idim(P ) in the upper bounds. Also, note that the upper bound in

this theorem holds for an even broader range of values of q than what is included in

the hypothesis. However, when q ≤ n−1/2, the upper bound from Theorem 4.1.7 is

better.

4.6 A Second Extremal Problem

With the machinery we have developed thus far, we can also say something interesting

about another extremal problem involving conditions which force a poset to contain

a large standard example—although now we will be concerned with random posets

where p is very small.

For integers d and n with n ≥ 2d+1, define f(n, d) to be the least positive integer

so that if P is a poset with |P | = n and dim(P ) ≥ f(n, d), then P contains Sd.

Our primary interest now is in determining the behavior of f(n, d) when d is fixed

and n tends to infinity. This problem was first posed in [41], and then referenced on

page 274 in EKT. Here we obtain a better result, and we remove the requirement

that d be large.

For historical reasons, the value of f(n, 2) has been studied—albeit with different

notation and terminology—for many years. No doubt this results from the fact that

the class of posets excluding the standard example S2 constitute the class of interval

orders. Combining results of several authors (see the discussion in [5]), the value of

f(n, 2) is known to within a small additive constant. However, as a crude estimate,

we have f(n, 2) = (1 + o(1)) lg lg n.
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Here, we will prove the following result.

Theorem 4.6.1. For all d ≥ 3,

f(n, d) ≥ n1− 2d−1
d(d−1)

9 log n
.

Proof. We fix a value of d ≥ 3 and then take p to have the following value

p = n−
(2d−1)
d(d−1) . (4)

We then consider three events E1, E2 and E3, and show that there exists a poset

P ∈ Ω(n, p) for which all three events occur. The event E1 is simply that P have

a complete antichain matching. Almost all posets satisfy this property, so we can

comfortably take Pr(¬E1) < 1/6.

Fix the value of s at s = 3 log n/p. In view of Lemma 4.4.1, almost surely a poset

P in Ω(n, p) is s-mixed. Event E2 occurs when P is s-mixed. Again, being generous,

we can take Pr(¬E2) < 1/6.

We need the following technical lemma.

Lemma 4.6.2. If P is a poset in Ω(n, p) and P is s-mixed, then P does not contain a

bipartite subposet Q = V ∪ V ′ with |V | = |V ′| = 2s satisfying the following condition:

There is a a complete antichain matching M in Q, as evidenced by the labellings

V = {v1, v2, . . . , v2s} and V ′ = {v′1, v′2, . . . , v′2s} for which there is a linear extension

L of Q with vi > v′i in L for each i = 1, 2, . . . , 2s.

Proof. Suppose P is a poset for which such a bipartite subposet and the associated

linear extension can be found. After a relabelling, we may assume that v1 > v2 >

v3 > · · · > v2s in L. However, this implies that vi > v′j in L whenever 1 ≤ i ≤ s and

s+ 1 ≤ j ≤ 2s, which implies that P is not s-mixed.

Next, we let X be the random variable that counts the number of copies of Sd in

P . Then the expected value of X is given by

E[X] =

(
n

d

)2

d!(1− p)dpd(d−1) < n/d! ≤ n/6.
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Let E3 be the event that occurs when X < n/3. Then Pr(¬E3) < 1/2.

Since Pr(¬E1)+Pr(¬E2)+Pr(¬E3) < 1/6+1/6+1/2 = 5/6, there exists a poset

P in Ω(n, p) for which all three events occur.

Let M = (A,A′) be an antichain matching in P as evidenced by the labellings

A = {a1, a2, . . . , an} and A′ = {a′1, a′2, . . . , a′n}. Without loss of generality, we may

assume that any copy of Sd contained in P (there are less than n/3 of them) contains

at some point in {ai : 2n/3 < i ≤ n} ∪ {a′i : 2n/3 < i ≤ n}. Hence there are no

copies of Sd in the bipartite subposet Q = B ∪B′ where B = {ai : 1 ≤ i ≤ 2n/3} and

B′ = {a′i : 1 ≤ i ≤ 2n/3}.

Since Q is a subposet of P , we know that Idim(P ) ≥ Idim(Q). Now let F be any

family of linear extensions of Q which is a realizer of B × B′. Then F must reverse

the pairs in {(ai, a′i) : 1 ≤ i ≤ 2n/3}. However, in view of Lemma 4.6.2, we conclude

that

dim(P ) ≥ Idim(P ) ≥ Idim(Q) ≥ 2n/3

2s
=

pn

9 log n
=
n1− 2d−1

d(d−1)

9 log n
.

This completes the proof of Theorem 4.6.1.

Upper bounds on f(n, d) when d ≥ 3 are more challenging. Indeed the following

result of Biró, Hamburger and Pór [4] is all that we know.

Theorem 4.6.3. For every d ≥ 3 and every ε > 0, there is an integer n0 so that if

n > n0 and P is a poset with |P | = 2n and P does not contain the standard example

Sd, then dim(P ) < εn.

One may wonder why we did not use the EKT result on the expected value of

Idim(P ). The problem is that in order to get the smallest possible value on the

exponent in the expression for p, we need to have the order of the expected number

of copies of Sd behave like n and not like Idim(P ). This means that we will remove

a very large number of points from P and while it might be natural to believe that

we can do this in a way that the subposet Q which does not contain any copies of Sd
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has very large dimension, it would require knowledge of the concentration about the

expected value of dimension, and we are a long way away from understanding this

issue.

On the other hand, the technique used in this proof provides a very simple argu-

ment that, for example when p = n−1/2, almost surely Idim(P ) = Ω(n1/2/ log n). So

the EKT machinery only manages to move the log n term to the numerator in this

lower bound. This detail is essential for understanding the accuracy of the Füredi-

Kahn bounds, but the elementary approach at least gives the right exponent.

4.7 Some Comments on Open Problems

The original EKT paper contained a list of 12 problems. Here we have made sub-

stantive progress on one of them (Problem 5.3) and solved Problem 5.6 completely by

answering the question posed in the negative. We have made substantive progress on

Problem 5.8, although much work remains to be done. In particular, we should now

ask for the true behavior of the expected value of dim(P ) when n−4/5 < q ≤ n−1/4,

the interval where we are unable to determine the expected value of n − dim(P ) up

to a multiplicative constant.

Of course, the two related extremal problems discussed in the preceding two sec-

tions are still a challenge. We are hesitant to offer a conjecture on the correct exponent

of the function f(c), as there are too many examples where the Lovász Local Lemma

provides useful information but not the entire answer.

For the second extremal problem, it would be very interesting to show that for

each d ≥ 3, there is a constant cd > 0, so that f(n, d) < n1−cd , although it is not clear

that such a constant exists, even when d = 3.
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[19] Erdős, P., Kierstead, H., and Trotter, W. T., “The dimension of random
ordered sets,” Random Structures and Algorithms, vol. 2, pp. 253–275, 1991.
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This dissertation has Three principal components. The first component is

about the dimension of posets with matchings in comparability and incomparability

graphs. In 1951, Hiraguchi proved that for any finite poset P , the dimension of P is

at most half the size of P . We develop some new inequalities for the dimension of

finite posets. These inequalities are then used to bound dimension in terms of the

maximum size of matchings. We prove that if the dimension of P is d and d is at least

3, then there is a matching of size d in the comparability graph of P , and a matching

of size d in the incomparability graph of P . The bounds in above theorems are best

possible, and either result has Hiraguchi’s theorem as an immediate corollary.

In the second component, we focus on an extremal graph theory problem whose

solution relied on the construction of a special poset. In 1959, Paul Erdős, in a

landmark paper, proved the existence of graphs with arbitrarily large girth and large

chromatic number using probabilistic method. In a 1991 paper of Kř́ıž and Nešetřil,

they introduced a new graph parameter eye(G). They show that there are graphs

with large girth and large chromatic number among the class of graphs having eye

parameter at most three. Answering a question of Kř́ıž and Nešetřil, we were able

to strengthen their results and show that there are graphs with large girth and large

chromatic number among the class of graphs having eye parameter at most two.

The last component is about random poset—the poset version of the Erdős–Rényi

random graph. In 1991, Erdős, Kierstead and Trotter (EKT) investigated random

height 2 posets and obtained several upper and lower bounds on the dimension of the

random posets. Motivated by some extremal problems involving conditions which

force a poset to contain a large standard example, we were compelled to revisit this



subject. Our sharpened analysis allows us to conclude that as p approaches 1, the

expected value of dimension first increases and then decreases, a subtlety not identified

in EKT. Along the way, we establish connections with classical topics in analysis as

well as with latin rectangles. Also, using structural insights drawn from this research,

we are able to make progress on the motivating extremal problem with an application

of the asymmetric form of the Lovász Local Lemma.
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