
ACO Comprehensive Exam October 8 and 9, 2018

1. Computability, Complexity and Algorithms

(a): Count s− t Paths in DAGs: Let G(V,E) be a directed acyclic graph given in adjacency
list representation, and let s ∈ V and t ∈ V be distinct vertices. Give an O(|V |+ |E|) algorithm
that computes the number of distinct paths from s to t in G.
(b): Count s − t Paths in General Directed Graphs: Let G(V,E) be a general directed
graph given in adjacency matrix representation, and let s ∈ V and t ∈ V be distinct vertices.
Argue that, if there is a polynomial-time algorithm that computes the number of distinct paths
from s to t in G, then there is a polynomial-time algorithm that decides Hamiltonicity in general
directed graphs.

Solution: (a) First, in O(|V | + |E|) time we perform topological sorting on G: That is, DFS
with the vertex that finishes first being placed last, the vertex that finishes second being placed
second to last etc. We we may now assume that the vertices of V are ordered v1, v2, . . . , vn so
that vi → vj ∈ E implies i < j. In addition, without loss of generality, we may assume that
s = v1 and t = vn.
Next we count the number of distinct paths from v1 to vn using dynamic programming. Let us
initialize P (v1) = 1, and suppose that we have computed P (vk′) for all vk′ for 1 ≤ k′ < k ≤ n.
We set P (vk) :=

∑

k′→k∈E P (vk′). In implementation:
Initialization: P (v1) = 1
Memorization: for k := 2 to n

P (vk) = 0
for all v′k → vk ∈ E

P (vk) := P (vk) + P (vk′)
Return: P (vn)

Correctness follows from the recursive form of the solution, and running time from the fact that
vertices and edges are used for updates a small constant number of times.
(b) Let P (k) denote the number of paths of lenght k from s to t in G, 1 ≤ k ≤ n− 1. That is,
each path contributing to P (k) has k + 1 vertices and k edges. Therefore, P (k) < nk.
Define a graph G′(V ′, E ′) by replacing each edge u → v with a chain of diamonds of length
m, as below (m will be determined later.) Now a single edge of G gives rise to 2m distinct
paths from u to v. Now realize that P (k)<nk s − t paths of length k of G give rise to at most

∑n−2
k=1 P (k) <

∑n−2
k=1 n

k = nn−1−1
n−1

− 1 s−t paths of length at most (n− 2) in G, which is less than
nn−1

n−1
× 2m(n−2) s−t paths of length at most 2m(n− 2) in G′.

On the other hand, a single s−t path of length n − 1 in G gives 2m(n−1) s−t paths of length
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2m(n− 1) in G′.
By noting that nn−1

n−1
× 2m(n−2) << 2m(n−1), say for m = n2

nn−1

n− 1
× 2m(n−2) vs 2m(n−1)

nn−1

n− 1
vs 2m

nn−1

n− 1
vs 2n

2

nn−1

n− 1
<< 2n

2

.

Thus, if we can count s − t paths in a general directed graph in polynomial time, then, we can
can check for every pair (s, t) ∈ V × V if there is a length n − 1 path, i.e. a Hamiltonian path,
from s to t. And since there are exactly n2 pairs (s, t), if we could count s− t paths in a general
directed graph, we could decide in polynomial time if there is a length (n − 1) directed path
from s to t, we could decide Directed Hamiltonian Path, and hence Hamiltonicity, in polynomial
time.

2. Analysis of Algorithms

Matrix Identity Testing

• Recall the Schwartz-Zippel lemma:

Lemma 1 (Schwartz-Zippel Lemma) Let p(x1, . . . , xn) be a nonzero polynomial of n
variables with degree d. Let S be a finite subset of R, with at least d elements in it. If we

assign x1, . . . , xn values from S independently and uniformly at random, then

P[p(x1, . . . , xn) = 0] ≤
d

|S|
.

Using the aforementioned lemma, design a randomized algorithm to test whether AB = C,
where A,B,C are three n×n matrices. Analyze the probability with which it will succeed,
and analyze its runtime.

• Explain how to “boost” the above algorithm to succeed with probability 1− δ.

Solution:

• Pick a vector x uniformly from a set Sn. Calculate ABx and Cx. By n applications of the
Schwartz-Zippel Lemma, the probability these are not equal if AB 6= C is at least 1− n

|S|
,

and takes time O(n2).
Alternatively one can argue using the principle of deferred decision without S-Z.
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• Run the above algorithm k =
⌈

ln(1/δ)
ln(|S|/n)

⌉

rounds, and output “equal” if and only if all of

the tests come back with the value of “equal”.

3. Theory of Linear Inequalities

Let ek ∈ R
n for k = 0, . . . , n − 1 denote the vector with the first k entries being 1 and the

following n − k entries being −1. Let S = {e0, e1, . . . , en−1,−e0, . . . ,−en−1}, i.e., S consists of
all vectors consisting of +1 followed by −1 or vice versa.

1. Consider any vector a ∈ {−1, 0, 1}n such that

(a)
∑n

i=1 ai = 1, and

(b) for all j = 1, . . . , n− 1, we have 0 ≤
∑j

i=1 ai ≤ 1.

Show that
∑n

i=1 aixi ≤ 1 and
∑n

i=1 aixi ≥ −1 are valid inequalities for conv(S).

2. Show that any such inequality defines a facet of conv(S).

Solution.

1. Pick any such a ∈ {−1, 0, 1}n satisfying the two conditions. Consider ek for some 0 ≤ k ≤
n− 1. We have

n
∑

i=1

eki ai =
k

∑

i=1

ai −
n

∑

i=k+1

ai

= 2
k

∑

i=1

ai −
n

∑

i=1

ai

= 2
k

∑

i=1

ai − 1

But since
∑k

i=1 ai ∈ {0, 1}, we have
(

2
∑k

i=1 ai − 1
)

∈ {−1, 1}. Thus we have −1 ≤ aT ek ≤

1 and equivalently, we have −1 ≤ aT (−ek) ≤ 1.

2. Consider again any such a ∈ {−1, 0, 1}n satisfying the two conditions. The above proof
shows that for any 0 ≤ k ≤ n−1, we have aT ek ∈ {+1,−1}. Thus either ek or −ek satisfies
the inequality at equality. In particular, we obtain n points in conv(S) that satisfy it at
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equality. We now show that these points are affinely independent to show it is a facet.
Suppose there exist λ0, . . . , λn−1 and ǫ0, . . . , ǫn−1 ∈ {−1, 1} such that

n−1
∑

k=0

λkǫke
k = 0,

n−1
∑

k=0

λk = 0.

We now show that all λi are zero by induction on i. Suppose that for some i ∈ {0, 1, . . . , n−
2} we have already shown that λj = 0 for 0 ≤ j ≤ i − 1. Now, we add the (i + 1)st and
last coordinate of each remaining ek:

n−1
∑

k=i

λkǫk(e
k
i+1 + ekn) = 2λiǫi(e

i
i+1),

where we use the fact that the (i+ 1)st and the last coordinate of ek are of different signs
except for ei. Thus we obtain λi = 0.
For i = n− 1, there is only a single vector remaining and thus λn−1 must be zero.

4. Combinatorial Optimization

Assume n is odd, and G = (V,E) is a graph with |V | = n, |E| = 2n−2, such that G is the union
of two edge-disjoint spanning trees. Assume furthermore that half of the edges are colored red,
the other half blue (where the coloring of edges is unrelated to the spanning trees). Show that
G contains a spanning tree where exactly half of the edges are red and half of them blue.

Solution. Let R denote the edges colored red and B denote the edges colored blue. Let
M1 = (E, I) denote the graphic matroid and M2 = (E, I) denote the partition matroid where
a set F ⊆ E is independent if there are at most n−1

2
red edges in F and at most n−1

2
blue edges

in F . A common basis to the two matroids will be a spanning tree with half red and half blue
edges. Thus it is enough to show that the common base polytope is non-empty. Indeed, we
show x∗ = 1

2
· 1E is a feasible solution to the common base polytope. From Corollary 41.12d of

Schrijver, it is enough to show that x∗ is in the base polytopes of two matroids. Since G is a
union of two edge disjoint spanning trees, say T1 and T2, we have x∗ = 1

2
1T1

+ 1
2
1T2

. Thus x∗ is
a convex combination of two bases of M1 and is in the base polytope of M1.

Partition the red edges in two arbitrary sets of size n−1
2
, say R1 and R2 and similarly for the

blue edges B1 and B2. Observe that B1 ∪ R1 is a base of M2 and B2 ∪ R2 is also a base. Since
x∗ = 1

2
1B1∪R1

+ 1
2
1B2∪R2

, we have that x∗ is in the base polytope ofM2 as well. Thus the common
base polytope is non-empty and any extreme point of it satisfies the conditions required.
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5. Graph Theory

Let d be a positive integer and let G be a graph with average degree at least 8d. Show that G
contains a d-connected subgraph whose edges can be oriented so that the resulting digraph has
no directed path on three vertices.

Solution: Note that the subgraph to be found must be bipartite. So we need to look for a
d-connected bipartite subgraph in G.

By applying induction on |V (G)|, we can show that G contains a bipartite subgraph B such
that e(B) ≥ e(G)/2. (e(G) denotes the number of edges in G.)

Thus, B has average degree at least 4d. By a theorem of Mader (covered in MATH 6014), B
has a d-connected subgraph, say H. Let V1, V2 be the bipartition of H, and orient all edges of
H from V1 to V2.

6. Probabilistic methods

Let Sn be a random string of length n, where each character is, independently, chosen uniformly
at random from the alphabet A := {A, . . . , Z}. For each n, let Hn ∈ A

m be a given string of
length m = m(n) ≥ 0. We say that Sn contains Hn if Sn it contains a consecutive substring of
length m which equals Hn. Find a threshold function m∗ = m∗(n) such that

Pr(Sn contains Hn)→

{

1 m = o(m∗),

0 m = ω(m∗).

Solution: Let X = Xn be the number of occurrences of Hn in Tn, and define Ei as the indicator
for the event that Tn contains a consecutive copy of Hn starting at position i. Note that, for
1 ≤ i ≤ n−m+ 1, by independence of characters we have

Pr(Ei) = (1/26)m = 26−m.

Hence
EX = (n−m+ 1)26−m,

so the natural guess for the threshold function (based on the heuristic EX ≈ 1) is, say,

m∗ := log26 n = Θ(log n).

For the 0-statement we use the first moment method: for m = ω(m∗) we have

Pr(Sn contains Hn) = Pr(X ≥ 1) ≤ EX ≤ (n+ 1)26−m → 0,

For the 1-statement we shall use the second moment method. Clearly, for m = o(m∗) we have

EX = (n−m+ 1)26−m = Θ(n) · 26−m ≥ n1−o(1) →∞.
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Noting that sufficiently far apart strings are independent (as they depend on disjoint sets of
independent random variables), it follows that

varX = EX2 − (EX)2 =
∑

i,j∈[n−m+1]

[Pr(Ei ∩ Ej)− Pr(Ei) Pr(Ej)] ≤
∑

i,j∈[n−m+1]:|i−j|≤m

Pr(Ei ∩ Ej).

(1)

Estimating Pr(Ei ∩ Ej) ≤ Pr(Ei) = 26−m, the crux is that for m = o(m∗) we crudely have

varX ≤ O(n ·m) · 2−m ≤ Θ(EXn) · o(log n) = o((EXn)
2),

which implies the 1-statement using the second moment method (or Chebychev’s inequality).

7. Algebra

Let p be a prime number. Show that if G is a finite p-group, and if N E G is a normal subgroup
of order p, then N is contained in the center of G.

Solution: Consider the action of G on itself by conjugation. The orbit of any element of N is
contained within N since N E G. The size of the orbit of any element x ∈ N is the index of the
stabilizer of that element. By Lagrange’s Theorem, the index of a subgroup of any group divides
the order of the group, which is a power of p in this case. Thus, the size of the orbit is also a
power of p. Since the orbit of x is contained in N and |N | = p, the orbit has size 1 or p. Our
goal is to show that the orbit always has size 1, as this is the same as saying that every element
of G centralizes x, i.e., that x ∈ Z(G). Suppose then that the orbit had size p. But then G acts
on N transitively. This is a contradiction since the identity is in its own conjugacy class.

Alternatively, note that the conjugation action of G acting on N gives a homomorphism from
G into Aut(N), which is a group of size p−1. Thus, the image of this homomorphism is trivial, as
it also has order a power of p, which implies that each element of N commutes with all elements
of G.

7. Linear Algebra

Let A be a bistochastic matrix, that is a real n× n matrix such that

Ai,j ≥ 0 ∀i, j
n

∑

i=1

Ai,j = 1 ∀j
n

∑

j=1

Ai,j = 1 ∀i .

Let a = mini,j Ai,j and let v ∈ R
n be such that

∑n
i=1 vi = 0.

(a) Show that
‖Av‖1 ≤ (1− na)‖v‖1,

where ‖v‖1 =
∑n

i=1 |vi|. Is the estimate sharp? That is, can you find A and v as above such that

‖Av‖1 = (1− na)‖v‖1 ?
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(b) Show that
‖Av‖∞ ≤ (1− na)‖v‖∞,

where ‖v‖∞ = maxi |vi|. Is the estimate sharp? That is, can you find A and v as above such
that

‖Av‖∞ = (1− na)‖v‖∞ ?

Solution: (a) Since Ai,j ≥ a and
∑n

i=1 vi = 0 we have

‖Av‖1 =
∑

i

∣

∣

∣

∣

∣

∑

j

Ai,jvj

∣

∣

∣

∣

∣

=
∑

i

∣

∣

∣

∣

∣

∑

j

(Ai,j − a) vj

∣

∣

∣

∣

∣

≤ (2)

∑

i

∑

j

(Ai,j − a) |vj| = (1− na)‖v‖1 . (3)

The estimate is sharp. Consider A such that Ai,i = 1− (n− 1)b while Ai,j = b for i 6= j, where
b < 1/n. Then mini,j Ai,j = b and Av = (1− nb)v for every v such that

∑n
i=0 vi = 0.

(b) Call I ⊂ {1, . . . , n} the set of indices such that vi ≥ 0. Since
∑n

i=0 vi = 0 both I and Ic are
non empty. We have

‖Av‖∞ = max
i

∣

∣

∣

∣

∣

∑

j

Ai,jvj

∣

∣

∣

∣

∣

= max
i

∣

∣

∣

∣

∣

∑

j∈I

Ai,jvj −
∑

j∈Ic

Ai,j|vj|

∣

∣

∣

∣

∣

but we have
∑

j∈Ic

Ai,j|vj| > a
∑

j∈Ic

|vj| = a
∑

j∈I

vj

so that

∑

j∈I

Ai,jvj −
∑

j∈Ic

Ai,j|vj| ≤
∑

j∈I

(Ai,j − a)vj ≤ max
j∈I

vj
∑

j∈I

(Ai,j − a) ≤ (1− na)max
i∈I

vi

in the same way
∑

j∈I

Ai,jvj −
∑

j∈Ic

Ai,j|vj| ≥ −(1− na)max
j∈Ic

|vj|

so that

‖Av‖∞ ≤ (1− na)max

(

max
i∈I

vi, max
j∈Ic

|vj|

)

= (1− na)‖v‖∞ .

Clearly the same example as in part (a) works here to show that the estimate is sharp.


