1. Computability, Complexity and Algorithms

Bottleneck edges in a flow network:
Consider a flow network on a directed graph $G = (V, E)$ with capacities $c_e > 0$ for $e \in E$. An edge $e \in E$ is called a bottleneck edge if increasing the capacity c_e increases the size of the maximum flow.

Given a flow network $G = (V, E)$ and a maximum flow f^*, give an algorithm to identify all bottleneck edges. Do as fast in $O(\cdot)$ as possible. Justify correctness of your algorithm. You can assume basic operations (comparison, addition, subtraction, multiplication, and division) on two numbers take constant time.

2. Analysis of Algorithms

All-pairs shortest paths (APSP) and Min-Sum Products. Suppose W is the adjacency matrix for G a simple undirected graph with no self-loops and no negative edge weights, and W^* is the reachability matrix ($w^*_{ij} = 1$ if there exists a path from i to j).

- Suppose operations are boolean (addition is OR, multiplication is AND). Suppose

 \[
 W = \begin{bmatrix}
 A & B \\
 C & D
 \end{bmatrix}
 \]

 Then show that

 \[
 W^* = \begin{bmatrix}
 E & F \\
 G & H
 \end{bmatrix} = \begin{bmatrix}
 (A \lor BD^*C)^* & EBD^* \\
 D^*CE & D^* \lor GBD^*
 \end{bmatrix}
 \]

 Observe that F, G use E in their definition, etc., so the calculations have to be done in the correct order. *Hint:* Consider G as partitioned into two subcomponents $V = V_1 \cup V_2$.

- Now suppose W_{ij} is the weight of the edge (i, j). Moreover, now assume that matrix products are min-sum products (that is, addition is replaced by min and product by sum), and $A \lor B$ is the element-wise minimum of matrices A and B. If W^*_{ij} now denotes the shortest-path distance from i to j, show that W^* is computed by the same relation as in the previous part. You may be brief, 2-3 sentences suffices if your previous answer was thorough.

- Using this idea, show that

 \[
 \text{APSP}(n) \leq 2\text{APSP}(n/2) + 6\text{MSP}(n/2) + O(n^2),
 \]

 where APSP(n) denotes the worst-case running time of computing APSP on an n-vertex input graph, and MSP(n) denotes the worst-case running time of computing the min-sum product of two $n \times n$ matrices. Assume that arithmetic operations can be carried out in constant time.

 In turn, show that $\text{APSP}(n) = \tilde{O}(\text{MSP}(n) + n^2)$. *Hint:* We know that MSP is superlinear, even superquadratic, in its runtime, simply since it needs to read its two input matrices.
3. Theory of Linear Inequalities

Let \(P = \{ x \in \mathbb{R}^n \mid Ax \leq b \} \subseteq [0,1]^n \) be a polytope with 0/1 vertices. It is well known that the diameter of any 0/1 polytope is at most \(n \). Here we consider a stronger notion of diameter where the sequence of vertices has to be non-decreasing in value with respect to a given objective \(c \in \mathbb{Z}^n \): For any two vertices \(x, y \in P \) with \(cy = \max_{z \in P} cz \) find the shortest path of adjacent vertices \(x_1, \ldots, x_l \) with \(x = x_1 \) and \(y = x_l \) so that \(cx = cx_1 \leq \cdots \leq cx_l = cy \). The monotone diameter for an objective \(c \) is the maximum length over all such vertex pairs.

Prove that the monotone diameter is at most \(O(n \log C) \), where \(C = \max_i |c_i| \) (6 points). Can you also show that in this case the monotone diameter is at most \(n \) irrespective of the objective \(c \)? (4 points)

4. Combinatorial Optimization

Let \(\mathcal{M} = (U, \mathcal{I}) \) be a matroid and \(w : U \to \mathbb{R} \) be a weight function.

1. Given any two bases \(B \) and \(B' \), show that there exists a sequence of bases \(B_0, B_1, \ldots, B_k \) with the following properties.

 (a) \(B_0 = B \) and \(B_k = B' \).

 (b) \(B_i \subseteq B \cup B' \) for each \(0 \leq i \leq k \).

 (c) \(|B_i \Delta B_{i+1}| = 2 \) for each \(0 \leq i \leq k - 1 \).

2. Suppose \(B' \) is a maximum weight basis under weight function \(w \). Show that we can additionally ensure that \(w(B_{i+1}) \geq w(B_i) \) for each \(0 \leq i \leq k - 1 \).

5. Graph Theory

Let \(G \) be a 2-connected graph and let \(s \in V(G) \). Prove that \(G \) has two spanning trees \(T_1, T_2 \) such that for every vertex \(v \in V(G) \) the two paths between \(v \) and \(s \) in \(T_1 \) and \(T_2 \) are internally disjoint.

6. Probabilistic methods

Suppose that we throw \(m \) balls into \(n \) bins independently and uniformly at random (initially all bins are empty, of course).

(A) Prove that \(m^*(n) = n \log n \) is a threshold function for the property ‘there exists an empty bin’, i.e.,

\[
\Pr(\text{there exists an empty bin}) \rightarrow \begin{cases}
1 & m \ll n \log n, \\
0 & m \gg n \log n.
\end{cases}
\]
(B) Make an educated guess what the threshold function for the property ‘there exists a bin with at most one ball’ is. Prove the corresponding 0-statement (no proof of the corresponding 1-statement expected).

Hint: Recall that \(1 - x = e^{-x + O(x^2)} \) as \(x \to 0 \).

7. **Algebra**

Suppose \(p \) and \(q \) are odd primes and \(p < q \). Let \(G \) be a finite group of order \(p^3q \). Prove that \(G \) has a normal Sylow subgroup.